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Due to space limitation, some illustrations, proofs and
experimental results are omitted in the main paper, and we
provide them in this supplemental file for completeness.

1 SEEDING EXAMPLES

In this section, for readers’ comprehension, we present two
seeding examples to illustrate the non-adaptive seeding
process and the adaptive process respectively. For ease of
illustration, we assume B1 = B2 = 1 and the discount rate
in the adaptive case is D = {0.5, 1.0}.

1.1 Non-adaptive Seeding Example

Fig. 1. An example of the non-adaptive seeding process.

In the recruitment stage, user a seems to be more prof-
itable, since a is able to reach the influential user c. Thus,
we allocate discount 0.8 to user a and 0.2 to user b in stage
1. Budget B1 is used up. Suppose user a becomes an agent
while b does not. Then, we reach users c and d via user a.
In the trigger stage, we distribute budget B2 = 1 to newly
reachable users by allocating discount 0.6 to user c and 0.4 to
user d. User c becomes the seed and then influence diffusion
starts from it. Finally, user f gets influenced.

1.2 Adaptive Seeding Example
In the adaptive case, initially accessible users are seeded
sequentially. In the first round, we adopt the action (a, 0.5),
i.e., seeding user a with discount 0.5. Unfortunately, a
refuses the discount. Then, we move to the second round,
where the remaining budget B1 is still 1. We adopt the
action (b, 1.0) and user b accepts the discount. Then, b’s
neighbors d and e become reachable. Both d and e are

Fig. 2. An example of the adaptive seeding process.

provided with discount 0.5 from budget B2. Suppose d and
e both become the seed and the influence diffusion starts
from them. Finally, users g and h get influenced.

2 MISSING PROOFS

In this section, we present the omitted proofs for Theorems
and Lemmas.

2.1 Proof of Lemma 1

We prove lemma 1 by the probabilistic method. Let d(·)
denote the degree of a node and d̄(·) denote the average
degree of nodes in a set. The expected average degree of
nodes in X is

E[d̄(X)] = E

[∑
v∈X d(v)

|X|

]
=

1

|X|
∑
v∈X

E[d(v)] = E[d(v)].

Recall that nodes in V are randomly selected intoX with
probability p → 0. For node v in V , the probability that it
is in N(X) is (1 − p)[1 − (1 − p)d(v)], i.e., v is not in X ,
but at least one of its neighbors is in X . Since p → 0, the
probability can be approximated by p(1− p)d(v). Thus, the
size of the neighborhood of X can be denoted as |N(X)| =∑
v∈V p(1−p)d(v). The sum of degrees of nodes in N(X) is∑
v∈V p(1− p)d2(v). The expected average degree of nodes

in N(X) is

E[d̄(N(X))] =E

[∑
v∈V p(1− p)d2(v)∑
v∈V p(1− p)d(v)

]
= E

[∑
v∈V d

2(v)∑
v∈V d(v)

]
Applying Cauchy-Schwartz inequality, we have∑
v∈V d

2(v) ≥ 1
n [
∑
v∈V d(v)]2. Thus, E[d̄(N(X))] ≥



E
[

1
n

∑
v∈V d(v)

]
= E[d(v)]. Therefore, E[d̄(N(X))] ≥

E[d̄(X)]. This completes the proof.

2.2 Proof of Lemma 2
We first show the NP-hardness of the discrete two-stage
non-adaptive influence maximization by reduction from
the NP-complete Set Cover problem. Consider an arbitrary
instance of Set Cover. Let A = {A1, A2, · · · , Am} be a
family of subsets of a ground set U = {u1, u2, · · · , un},
satisfying

⋃m
i=1Ai = U . The problem is whether there exists

a subfamily C ⊆ A, |C| = k, whose union is U .
(1) We proceed to construct a discrete non-adaptive influ-

ence maximization problem corresponding to the Set Cover
problem. Define a graph G where there is only one node x
in X . For each subset Ai, there is a node i corresponding
to it, with a directed edge from x to i. For each element
uj , there is a node j corresponding to it. If uj ∈ Ai, then
there is an edge between i and j. All edges are associated
with probability 1. The budget is k + 1. In the two-stage
setting, one budget must be spent on initially reachable user
x to reach its neighbors. Thus, the Set Cover problem is
equivalent to selecting k nodes in N(x) to influence the n
nodes corresponding to U .

(2) If there is a solution to the discrete maximization
problem, then we can solve the Set Cover problem by select-
ing corresponding k subsets in A to cover the n elements in
U .

(3) It is obvious that the reduction from Set Cover can be
completed in polynomial time by traversing A and U .

Thus, we prove that the discrete case is NP-hard. We
can show that our continuous non-adaptive influence max-
imization is NP-hard by reduction from the discrete case,
which is trivial and thus omitted. Intuitively, the discrete
IM is only a special case of our continuous setting.

2.3 Proof of Lemma 3
If T1 = T2, Lemma 3 holds definitely. We focus on T1 $ T2.

To begin with, we prove a simple case where T2 =
T1 ∪ {v}. Assume the optimal discount allocation in T1

is C∗2 . Since all users in T1 are also in T2 and the bud-
get is the same, C∗2 is a feasible allocation in T2 where
the discount of user v is 0 and the discounts of other
users are the same as C∗2 . Then, we have Q(C∗2 ;T2) =
maxQ(C2;T1). Due to the optimality of maxQ(C2;T2), we
have maxQ(C2;T2) ≥ Q(C∗2 ;T2) = maxQ(C2;T1), i.e.
maxQ(C2;T1 ∪ {v}) ≥ maxQ(C2;T1). By the transitivity
of ≥, we know that maxQ(C2;T2) ≥ maxQ(C2;T1) holds
for all T1 $ T2. Thus, the proof of Lemma 3 is completed.

2.4 Proof of Theorem 1
(1) We start from a simple case, where only one element
is different between C2 and C ′2. Then, the result can be
extended to general cases by the transitivity of ≥.

Assume that only the discount of user u ∈ N(S) is
different. u gets discount cu in C2 while c′u in C ′2 and
cu ≥ c′u. By the definition of Q(C2;N(S)), it can be written
as

Q(C2;N(S)) =
∑

T⊆N(S)\{u}

Pr(T ;C2, N(S)\{u})·

{
[1− pu(cu)]I(T ) + pu(cu)I(T ∪ {u})

}
.

After a simple calculation, we have

Q(C2;N(S))−Q(C ′2;N(S)) =∑
T⊆N(S)\{u}

Pr(T ;C2, N(S)\{u})·

{
[pu(cu)− pu(c′u)][I(T ∪ {u})− I(T )

}
.

Since I(·) is nondecreasing under the independent cascade
model and pu(·) is nondecreasing as well by assumption,
we have Q(C2;N(S)) ≥ Q(C ′2;N(S)).

(2) Following similar technique, we prove the result
when there is only one element different between C1 and
C ′1. Assume the different element is u and u gets discount
cu in C1 while c′u in C ′1 with cu ≥ c′u. By the definition of
f(C1;X), f(C1;X) can be written as

f(C1;X) =
∑

S⊆X\{u}

Pr(S;C1, X \ {u}){
pu(cu) maxQ(C2;N(S ∪ {u}))

+ [1− pu(cu)] maxQ(C2;N(S))
}
.

After a simple calculation, we have

f(C1;X)−f(C ′1;X) =
∑

S⊆X\{u}

Pr(S;C1, X \ {u}){
[pu(cu)− pu(c′u)][maxQ(C2;N(S ∪ {u}))

−maxQ(C2;N(S))]
}
.

Note that the budget in stage 2 is the same under C1

and C ′1. According to Lemma 3, maxQ(C2;N(S ∪ {u})) −
maxQ(C2;N(S)) ≥ 0. According to the monotonicity of
pu(·) and cu ≥ c′u, we have f(C1;X) ≥ f(C ′1;X).

Combining case (1) and case (2), we complete the proof.

2.5 Proof of Lemma 4
It is easy to verify the adaptive monotonicity since under
any realization, since the influence spread will not decrease
when more users are seeded.

To prove the adaptive submodularity, according to its
definition, it is equivalent to prove that ∆(y|ψ) ≥ ∆(y|ψ′)
holds for any ψ ⊆ ψ′ and y ∈ Y \ dom(ψ). Note that ψ
is a process with sequence recording the actions adopted.
ψ ⊆ ψ′ means ψ is a subprocess of ψ′, i.e., ψ is a history of ψ′

and ψ′ went through all what ψ has experienced. Therefore,
the seeding result of nodes and states of edges observed by
ψ are the same in ψ′.

We first introduce some notations. The diffusion realiza-
tion φ (resp. φ′) is a function of the states of edges, which are
denoted as a series of random variables X = {Xij , (i, j) ∈
E} (resp. X ′ = {X ′ij , (i, j) ∈ E}).

We attempt to define a coupled distribution
ρ((λ, φ), (λ′, φ)) over two pairs of realizations (λ, φ) ∼ ψ
and (λ′, φ′) ∼ ψ′. Recall the definition of (λ, φ) ∼ ψ
that λ is consistent with the partial seeding realization
observed by ψ and φ is consistent with the states of edges
explored under ψ. Since (λ, φ) ∼ ψ, (λ′, φ′) ∼ ψ′, and
ψ ⊆ ψ′, the states of nodes and edges observed by ψ are
the same in (λ, φ) and (λ′, φ′). Then, the diffusion brought
by action y (i.e., ∆(y|ψ)) is only dependent on the states



of unknown edges. Thus, we will reduce the domain of
ρ to φ and φ′. We define the coupled distribution ρ in
terms of a joint distribution ρ̂ on X ×X ′, where φ = φ(X)
and φ′ = φ′(X ′) are the diffusion realizations induced by
the two distinct sets of random edge states respectively.
Recall that the domain of ρ is reduced to φ and φ′. Hence,
ρ((λ, φ(X)), (λ′, φ(X ′))) = ρ̂(X,X ′).

We say the seeding process ψ observes an edge if it is ex-
plored and the state is revealed. For any edge (i, j) observed
by ψ (resp. ψ′), its state Xij (resp. X ′ij) is deterministic.
Recall that the states of edges observed by ψ are the same in
φ and φ′, since ψ ⊆ ψ′. We will construct ρ̂ so that the states
of all edges unobserved by both ψ and ψ′ are the same in
X and X ′, i.e., Xij = X ′ij , otherwise ρ̂(X,X ′) = 0. The
above constraints allow us to select Xij whose edges are
unobserved by ψ. We select such variables independently.
Hence for all (X,X ′) satisfying the above constraints, we
have

ρ̂(X,X ′) =
∏

(i,j) unobserved by ψ

p
Xij

ij (1− pij)1−Xij ,

otherwise ρ̂(X,X ′) = 0.

We next try to prove that the following formula holds for
any ((λ, φ), (λ′, φ′)) ∈ support(ρ),

σ̂(dom(ψ′) ∪ {y}, (λ′, φ′))− σ̂(dom(ψ′), (λ′, φ′)) ≤ (1)
σ̂(dom(ψ) ∪ {y}, (λ, φ))− σ̂(dom(ψ), (λ, φ)).

Let set B denote σ(dom(ψ), (λ, φ)), D denote
σ(dom(ψ)∪{y}, (λ, φ)), B′ denote σ(dom(ψ′), (λ′, φ′)) and
D′ denote σ(dom(ψ′)∪{y}, (λ′, φ′)). We will first show that
B ⊆ B′. For any node i ∈ B, there exists a path from some
node j ∈ dom(ψ) to it. Each edge in this path is observed
to be live. Since ψ ⊆ ψ′ and (λ, φ) ∼ ψ, (λ′, φ′) ∼ ψ′, the
edge observed to be live in ψ must be live as well in ψ′, and
j must also be a seed in ψ′. Then, there is also a path from i
to j under (λ′, φ′). Thus, B ⊆ B′.

We proceed to prove formula (1). Since ψ ⊆ ψ′, we
have dom(ψ) ⊆ dom(ψ′) and thus N(

⋃
p∈dom(ψ)

v(p)) ⊆

N(
⋃

p∈dom(ψ′)

v(p)). Therefore, nodes newly reached by v(y)

under ψ are part of those under ψ′, that is, N(v(y)) \
N(

⋃
p∈dom(ψ′)

v(p)) ⊆ N(v(y)) \ N(
⋃

p∈dom(ψ)

v(p)). Note that the

budget allocated to newly reached nodes under ψ and ψ′

is the same, because the budget drawn from B2 only de-
pends on the intrinsic property of v(y) itself. Furthermore,
((λ, φ), (λ′, φ′)) ∈ support(ρ), the states of unobserved
edges are the same. Thus, according to Lemma 3 and
B ⊆ B′, we can see that D \ B is a superset of D′ \ B′.
In addition, σ̂ = |σ|, B ⊆ D and B′ ⊆ D′, hence formula
(1) holds.

For ((λ, φ), (λ′, φ′)) /∈ support(ρ), ρ((λ, φ), (λ′, φ′)) = 0.
Then, summing over ((λ, φ), (λ′, φ′)) in support(ρ) and not

in support(ρ), we have∑
((λ,φ),(λ′,φ′))

ρ((λ, φ), (λ′, φ′))(σ̂(dom(ψ′) ∪ {y}, (λ′, φ′))

− σ̂(dom(ψ′), (λ′, φ′))) ≤∑
((λ,φ),(λ′,φ′))

ρ((λ, φ), (λ′, φ′))(σ̂(dom(ψ) ∪ {y}, (λ, φ))

− σ̂(dom(ψ), (λ, φ))).
(2)

Note that p((λ, φ)|ψ) =
∑

(λ′,φ′)

ρ((λ, φ), (λ′, φ′)) and

p((λ′, φ′)|ψ′) =
∑

(λ,φ)

ρ((λ, φ), (λ′, φ′)). We sum over (λ, φ)

in the left side of formula (2) and (λ′, φ′) in the right side.
Combining the definition of ∆(y|ψ) and ∆(y|ψ′), we have
∆(y|ψ) ≥ ∆(y|ψ′).

2.6 Proof of Lemma 5
We would like to prove this lemma by induction. Let Sm
denote the first m seeds selected by πgreedy and Rm denote
the first m seeds selected by πgreedy

relaxed.
(i) Let us consider the basic case, m = 1, i.e. the first

seed. It is easy to see that πgreedy
relaxed will choose user u that

maximizes E[σ̂(y,(Λ,Φ))]
dmin(u) , where y = (u, dmin(u)).

As for πgreedy, we probe y∗ = argmaxy∈Y
∆(y|ψp)
d(y) =

argmaxy∈Y
E[σ̂(y,(Λ,Φ))]

d(y) . Each time, the selected action is
refused or accepted. We accordingly delete the action and
move to the next round or get a seed.

The action space Y can be divided into a union of disjoint
action subsets Y :=

⋃
v∈X

Yv , where Yv is the set of actions

about user v, i.e., Yv = {y|v(y) = v}. We next show that for
each action subset Yv , there is no need to consider actions
whose discounts are not dmin(v). Due to the greedy policy
πgreedy, user v will be probed with Yv from the smallest
discount. For actions with discount less than dmin(v), v will
reject it. When the discount becomes dmin(v), v becomes a
seed and remaining polices are abandoned. Thus, it is equiv-
alent to select actions from Y ∗ = {(v, dmin(v))|v ∈ X}.
Then, the selection becomes selecting an action from Y ∗ that
maximizes E[σ̂(y,(Λ,Φ))]

dmin(v(y)) , which is the same as πgreedy
relaxed. Thus,

the two algorithms will yield the same first seed.
(ii) Assume that Sm and Rm are the same when m = k,

we proceed to the case m = k + 1. Given partial seeding
process ψp, the seed selected by π

greedy
relaxed is the user u that

maximizes ∆((u,dmin(u))|ψp)
dmin(u) . In terms of πgreedy, for each user

u, ∆(y|ψp) is the same for any action y about u, i.e. v(y) = u,
since u is assumed to be the seed when calculating ∆(y|ψp)
and the budget allocated in stage 2 only depends on user
u itself. Following similar arguments in (i), we derive the
(k + 1)-th seed selected by maximizing E[σ̂(y,(Λ,Φ))]

dmin(v(y)) . Thus,
the (k + 1)-th seed is the same in two algorithms.

Combining (i) and (ii), we complete the proof of Lemma
5.

2.7 Proof of Theorem 2
We next analyze the budget used in stage 1 in the relaxed
setting. Let us consider the selection of the last action, if
the remaining budget is smaller than the minimum desired



discounts dv of all the remaining users, then no one will
accept the discount and the remaining budget can not be
used. In the extreme case, all the remaining users desire
discount 1. Thus, the budget used in stage 1 is at least
B1 − 1. As noted in Section 5, with proper initial allocation
and enough iterations, the local optimum of the coordinate
descent algorithm in stage 2 could be eliminated. Let πgreedy

relaxed
denote the optimal action of the relaxed setting. According
to Theorem A.10 in [12], since σ̂ is adaptive submodular and
optimal value is obtained in stage 2, we have

σ̂(π
greedy
relaxed) ≥ (1− e−

B1−1
B1 )σ̂(πOPT

relaxed).

By the definition of σ̂(πOPT
relaxed), we can see that

σ̂(πOPT
relaxed) ≥ σ̂(πOPT).

Moreover, from Lemma 5, we have

σ̂(π
greedy
relaxed) = σ̂(πgreedy).

Thus,

σ̂(πgreedy) ≥ (1− e−
B1−1
B1 )σ̂(πOPT).

2.8 Proof of Lemma 6

It has been proven in [1] that the classical influence maxi-
mization under independent cascade model is NP-hard. We
would like to show that the classical IM can be reduced to
our action selection problem. Given an arbitrary instance
of the classical IM problem with budget k, the goal is to
influence the whole network by initially selecting k nodes.
This is only a special case of our problem, where there is
only one discount rate D = {1} and the action space is
Z = R ×D. If L∗ ⊆ Z is the optimal solution of this action
selection problem. Then, we can solve the classical influence
maximization problem by selecting corresponding nodes in
L∗. It is easy to see that the reduction can be performed
within polynomial time. Based on the above analysis, we
prove the NP-hardness of the optimal action selection in
stage 2.

2.9 Proof of Lemma 7

Suppose the newly reached users are R, and accordingly the
action space is Z = R×D. We first prove the submodularity
of Q(L;R|(λ, φ)), under some realization (λ, φ). ∀E1, E2 ⊆
Z and E1 ⊆ E2, ∀z ∈ Z \ E2, we aim to prove that

Q(E1 ∪ {z};R|(λ, φ))−Q(E1;R|(λ, φ)) ≥ (3)
Q(E2 ∪ {z};R|(λ, φ))−Q(E2;R|(λ, φ)).

Under the same seeding and diffusion realization (λ, φ),
E1 ⊆ E2 implies that the users influenced by actions E2

are also influenced by actions E1, but there exist users
influenced by E2 but not influenced by E1. Therefore, the
set of users influenced by z but not influenced by E1 is a
superset of that under E2. This conclusion directly leads to
formula (3). Since the left side of formula (3) represents the
number of users influenced by z but not by E1, and the
right side represents the number of users influenced by z
but not by E2, Thus formula (3) holds. Since a non-negative
combination of submodular functions is still submodular,
we derive that Q(L;R) is submodular.

We next prove that under some realization (λ, φ),
Q(L;R|(λ, φ)) is monotone nondecreasing. ∀E1 ⊆ E2 ⊆ Z ,
users who become seeds under E1 must be seeds under
E2. However, users seeded by E2 \ E1 may become seeds.
The states of edges are the same for E1 and E2 under the
same realization φ. Thus, E2 can achieve at least the same
diffusion as E1, i.e. Q(E2;R|(λ, φ)) ≥ Q(E1;R|(λ, φ)). The
non-negative combination of monotone functions are still
monotone. Hence, Q(E2;R) ≥ Q(E1;R).

2.10 Proof of Lemma 8

Under the discrete-discrete setting, the seeding process in
stage 1 is the same as the discrete-continuous setting, while
the seeding process in stage 2 aims at choosing an optimal
subset of actions from Z . Therefore, we only need to modify
the proof of Lemma 4 about stage 2. Then, we attempt to
prove the inequality |D′| − |B′| ≤ |D| − |B|. Following the
same argument in the proof of Lemma 4, we have B ⊆ B′.
Suppose the actions adopted in v(y)’s neighbors under ψ′

are L′. Since ψ ⊆ ψ′, by the proof of Lemma 4, we have

N(v(y)) \N(
⋃

p∈dom(ψ′)

v(p)) ⊆ N(v(y)) \N(
⋃

p∈dom(ψ)

v(p)). (4)

Moreover, the budget brought by v(y) in stage 2 is the
same under ψ and ψ′. Thus, we can carry out the same
set of actions L′ under ψ, triggering the same diffusion
from newly reached users. By formula (4), we see that v(y)
reaches more new users under ψ than ψ′. Thus, the action
space under ψ′ is contained in that of ψ, which allows
the possibility to achieve a larger diffusion under ψ. Recall
B ⊆ B′, we haveD′\B′ ⊆ D\B. Moreover, σ̂ = |σ|,B ⊆ D
and B′ ⊆ D′. Thus, we obtain |D′| − |B′| ≤ |D| − |B|. The
rest of the proof is the same as the proof of Lemma 4.

2.11 Proof of Theorem 3

Recall that σ̂(·|(λ, φ)) is adaptive submodular with respect
to realization distribution p((λ, φ)). From the general re-
sult of Theorem A.10 in [27], we see that in each round
if we obtain a Q(L;R) of α approximation ratio of the
optimal solution, then the greedy policy π

greedy
discrete achieves

a 1− e−α
B1−1
B1 approximation of the optimal policy πOPT

discrete.
According to Theorem 1 in [29], since Q(L;R) is monotone
and submodular, the approximation ratio of the greedy
algorithm in stage 2 is 1

2 (1 − e−1), i.e., α = 1
2 (1 − e−1).

Thus, the approximation ratio of πgreedy
discrete is 1− e−

B1−1
2B1

(1− 1
e ).

3 ESTIMATION OF I(S)

Influence estimation is frequently demanded in IM algo-
rithms to decide the discount allocation. However, it is
proven to be #P-hard [S1] [S2] and becomes an obstacle
of influence maximization. Thanks to the efforts of Tang
et al. [7] [21], a polling based framework called IMM is
proposed for efficient influence estimation, with which the
time complexity of greedy algorithm is only O((k + l)(n +
m) log n/ε2). Due to its favorable performance, we apply
the framework to estimate influences when designing allo-
cations, just like many other works, e.g., [8] [9] [S3]. To help



readers comprehend the implementation of our experiment,
we would like to briefly introduce the framework below.

Definition S1. (Reverse Reachable Set) [7] [21] Let v be a
node in V . A reverse reachable (RR) set for v is generated by first
sampling a graph g from G, and then taking the set of nodes in g
that can reach v. A random RR set is an RR set for a node selected
uniformly at random from V .

Lemma S1. ([S4]) For any seed set S and any node v, the
probability that a diffusion process from S can activate v equals
the probability that S overlaps an RR set for v.

Given network G(V,E) and propagation probabilities of
each edge, we first derive the transpose graph of G defined
asGT (V,ET ), i.e., edge (v, u) ∈ GT iff. (u, v) ∈ G. Note that
the propagation probability of edge (v, u) remains to be puv .
The crux of estimating I(S) lies in generating θ random RR
sets defined in Definition S1. Briefly speaking, to generate
an RR set, we select a node (e.g., v) uniformly at random
from V and stimulate a propagation from v. The intuition
is that by reverse propagation, we could find out which set
of users could potentially influence v. From Lemma S1, it
could be inferred that in expectation the influence spread
I(S) is equal to the fraction of RR sets covered by S times
the number of users |V | [7] [21]. Denoting the number of
RR sets covered by seed set S as FR(S), we have E[I(S)] =
E[FR(S)|V |/θ].

As can be seen, to estimate the influence spread, the
only parameter in need of specification is θ, i.e., the number
of RR sets to be generated, which is usually in O(n log n)
[8]. In our experiment, for datasets same with previous
works, we check their θ according to the constraints in [7].
If their setting is appropriate, we adopt the same θ as them.
Specifically, “wiki-Vote” is adopted in [8] where θ = 0.25M ;
“com-Dblp” is applied in [8] and [S5], where both works
set θ to be 20M; and “soc-Livejournal” is also tested in [S5],
where θ = 40M . For the dataset “ca-CondMat” adopted by
us, we find the parameter following the process in [7].

To illustrate the setting of θ, we reproduce relevant
content in [7] as follows.

According to Theorem 1 in [7], to obtain an approxima-
tion of error ε with probability 1− 1/nl, θ should be no less
than

θ =
2n[(1− 1/e) · α+ β]2

OPTε2
,

where OPT is the maximum expected influence spread,

α =
√
l log n+ log 2, and

β =
√

(1− 1/e) · [logCkn + l log n+ log 2].

As we know, it is almost impossible to obtain OPT. Thus,
we substitute OPT with a lower bound of the influence
spread. Accordingly, θ is larger than it is under OPT. Since θ
is expected to be large, the estimation is even more precise
after substitution. With this idea, we check the setting of
previous works which adopt identical datasets and find
their values of θ are reasonable. Regarding the dataset “ca-
CondMat”, we consider the most demanding case k = 50
and set ε to be 0.05 for rigor. The resultant θ is 1.4M. For
safety, we set θ to be 2M as shown in the main paper.

The above basic technique could apply to the adaptive
case well, where we only need to estimate the influence
of a deterministic seed set (in each round the seeded user

will certainly become the seed or not, accepting or refusing
the discount). However, for the non-adaptive case, given
an allocation, since no observation is made, the state of
users is probabilistic and accordingly the influence spread
is related to pu(cu). When estimating the influence, we need
to apply Theorem 9 in [8]. Specifically, when computing
f̂(C1;X) via Equation (10), we need to estimate the value
of max Q̂(C2; ·). By running Alg. 1, we could optimize
Q̂(C2; ·) and obtain the corresponding allocation (assumed
to be C). Then, by Theorem 9 in [8], we know that the
expected influence is n · [

∑
h∈RR sets 1−

∏
u∈h(1−pu(cu))]/θ.

Since pu(cu) is available, the value of the expression could
be derived. Accordingly, the value of f̂(C1;X) could be
derived by Eq. (10).

We would also like to mention that the IMM method is
only to estimate the influence when designing allocations.
However, when experimentally testing the performance of
algorithms, the influence spread is obtained by running 20K
times Monte Carlo simulations, as indicated in Sec. 7.1.

4 MORE EXPERIMENTAL RESULTS

In this section, we report the influence spread (Fig. 3, Fig. 4)
and running time (Fig. 5, Fig. 6) under α = 0.8.
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Fig. 3. Influence Spread in the Non-adaptive Case (α=0.8).
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Fig. 4. Influence Spread in the Adaptive Case (α=0.8).
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Fig. 5. Running Time in the Non-adaptive Case (α=0.8).
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Fig. 6. Running Time in the Adaptive Case (α=0.8).


