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Neighborhood Matters: Influence Maximization
in Social Networks with Limited Access

Chen Feng, Luoyi Fu, Bo Jiang, Haisong Zhang, Xinbing Wang, Feilong Tang and Guihai Chen

Abstract—Influence maximization (IM) aims at maximizing the spread of influence by offering discounts to influential users (called
seeding). In many applications, due to user’s privacy concern, overwhelming network scale etc., it is hard to target any user in the
network as one wishes. Instead, only a small subset of users is initially accessible. Such access limitation would significantly impair the
influence spread, since IM often relies on seeding high degree users, which are particularly rare in such a small subset due to the
power-law structure of social networks.

In this paper, we attempt to solve the limited IM in real-world scenarios by the adaptive approach with seeding and diffusion
uncertainty considered. Specifically, we consider fine-grained discounts and assume users accept the discount probabilistically. The
diffusion process is depicted by the independent cascade model. To overcome the access limitation, we prove the set-wise friendship
paradox (FP) phenomenon that neighbors have higher degree in expectation, and propose a two-stage seeding model with the FP
embedded, where neighbors are seeded. On this basis, for comparison we formulate the non-adaptive case and adaptive case, both
proven to be NP-hard. In the non-adaptive case, discounts are allocated to users all at once. We show the monotonicity of influence
spread w.r.t. discount allocation and design a two-stage coordinate descent framework to decide the discount allocation. In the
adaptive case, users are sequentially seeded based on observations of existing seeding and diffusion results. We prove the adaptive
submodularity and submodularity of the influence spread function in two stages. Then, a series of adaptive greedy algorithms are
proposed with constant approximation ratio. Extensive experiments on real-world datasets show that our adaptive algorithms achieve
larger influence spread than non-adaptive and other adaptive algorithms (up to a maximum of 116%).

Index Terms—Influence maximization, access limitation, adaptive approach.
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1 INTRODUCTION

THE last two decades have witnessed the dramatic de-
velopment of social networks (e.g., Facebook, Twitter),

which have become an important platform for the promo-
tion of ideas, behaviors and products. For example, viral
marketing is a widely adopted strategy in the promotion
of new products. The company selects some users and
provides them with some discounts within a predefined
budget, hoping that the product will be known by more
users via the “word-of-mouth” effect. This demand natu-
rally raises the influence maximization problem, which aims
at triggering the largest cascade of influence by allocating
discounts to users (called seeding). Since the seminal work
of Kempe et al. [1], numerous efforts have been made to
advance the research of the influence maximization problem
[2][3] [4] [5] [6] [7] [8] [9].

In most cases, the problem is solved under the implicit
assumption that the company can allocate discounts to any
user in the network. However, in the real-world commercial
campaign, the company often only has access to a small
subset of users. For example, an online merchant wishes to
promote a new product by providing samples to influential
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users. In practice, the merchant could only mail samples
to customers who have left address information before in
ways such as buying products, applying for membership.
Similarly, in many other applications, due to privacy con-
cern, network scale etc., the seeding process is limited to a
small sample of the network (like most work, the network
structure and the diffusion probabilities are assumed pre-
known and are not of concern). Due to the power-law
degree distribution of social networks, high degree users
are particularly rare in the small subset. Since influence
maximization often relies on seeding many high degree
users (not necessarily the highest ones), the access limitation
would evidently impair the influence spread. Regarding this
concern, initial attempts [10] [11] [12] [13] seed the subset of
users to reach neighbors who are voluntary to join in the
campaign automatically with the intuition of the friendship
paradox (FP) phenomenon [14] which reveals that the de-
gree of your neighbor is greater than yours in expectation.
As pioneers in the access limitation problem, [10] [11] [12]
[13] have largely expanded the influence spread but still fall
short of dealing with the uncertainties in real promotions.
Such uncertainties include two aspects. (1) Seeding uncer-
tainty: a targeted user will not necessarily become the seed
if the discount is not satisfactory. (2) Diffusion uncertainty:
due to the strength of social relationships or characteristics
of users, the influence propagation between two users is not
assured to be successful. Existing works distribute discounts
to users all at once, without considering whether the actual
seeding and diffusion is successful. Such fixed strategy
(referred to as “non-adaptive” method) is vulnerable to the
uncertainty in the seeding and diffusion process, resulting in
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unsatisfactory influence spread. Thus, we are motivated to
study an adaptive 1 approach, where users are sequentially
seeded based on previous seeding and diffusion results.

Specifically, the problem is investigated under the fol-
lowing settings. Suppose a company wants to promote a
new product through a social network by providing dis-
counts for users. Due to the difficulty in collecting user’s
information, only a small subset of users is initially acces-
sible, denoted as X . We consider a fine-grained discount
setting, i.e., discounts take value from [0, 1] instead of only 0
or 1 in previous works on this problem. Accordingly, a user
probabilistically accepts the discount and becomes a seed,
from which the diffusion starts. The diffusion process is
depicted by the widely acknowledged independent cascade
model. Since social networks leave traces of behavioral data
which allow observing and tracking, the spread of influence
could be easily observed. For example, from one’s social
account, we can see whether the user adopts the product.
On this basis, we make the first attempt to solve the limited
influence maximization problem by the adaptive approach.
Moreover, we investigate the non-adaptive method under
this setting for comparison. When undertaking this study,
we find it is challenging in the following three aspects.

Access Limitation: Under our setting, the influence
spread may suffer more from the access limitation due to
user’s uncertain nature. Thus, there is an increasing demand
on a new seeding model to address the access limitation
with user’s probabilistic behavior considered. We attempt
to design an effective model with natural intuition and
theoretical support.

Fine-grained Discount: With a larger discount space, the
scale of possible discount allocations accordingly becomes
greater in order sense. Thus, it is much harder to find an
effective discount allocation. Meanwhile, the corresponding
seeding uncertainty imposes additional difficulties on influ-
ence analysis and algorithm design.

Algorithm Design: In our seeding model, initially acces-
sible users are seeded to reach their neighbors for further
discount allocation. It is easy to see that the two seeding
processes are inter-related. This interdependency requires
our algorithm to collectively consider the two seeding pro-
cesses. Not only seeding results of initial users should be
considered but also possible seeding results of neighbors.

To overcome the access limitation, we intend to leverage
the FP phenomenon that neighbors have higher degree in
expectation. A new seeding model is proposed with the FP
embedded. We first seed users in X (stage 1) to reach their
neighbors for further discount allocation (stage 2). Whether
a user u accepts the discount cu is depicted by the seed
probability function pu(cu). Accordingly, we formulate non-
adaptive and adaptive cases, both proven to be NP-hard. (1)
Non-adaptive case: discounts are allocated to users in X all
at once and then neighbors of those who accept the dis-
count. (2) Adaptive case: we sequentially seed users in X by
adopting actions, defined as user-discount pairs, based on
previous seeding and diffusion results. Each time, if the user

1. We mean “adaptive” in the sense that users are sequentially seeded
based on previous seeding and diffusion results, while the concept in
[10] [11] [12] [13] means that the allocation in neighbors is related to the
set of seeds in initially accessible users.

accepts the discount, we further seed his/her neighbors. The
main contributions of this paper are highlighted as follows.
• We first formulate the limited IM problem under fine-

grained discounts and uncertain user nature. Then, we look
into the FP phenomenon in the set of users X and prove
it to hold set-wisely in any network. With this theoretical
support, we are inspired to design a two-stage seeding
model where neighbors of X are seeded, and thus we get
access to more influential users and the influence spread is
also expanded.
• In the non-adaptive case, we first show the mono-

tonicity of influence spread w.r.t. the discount allocation.
Then, a two-stage coordinate descent framework is de-
signed to decide the fine-grained discount in two stages. We
collectively consider the seeding process in stage 2 when
designing the discount allocation of stage 1.
• In each round of the adaptive case, we calculate the

benefit of each action (user-discount pair) by estimating
the increase of the influence spread when neighbors of the
user are seeded. Then, we adopt the action with the largest
benefit-to-discount ratio. With this idea, two algorithms
πgreedy and πgreedy

discrete are devised with performance guarantee,
where discounts of neighbors are determined by the coor-
dinate descent and greedy algorithm respectively. Further-
more, πgreedy

enum is proposed with the enumeration idea, achiev-

ing an approximation ratio of (1 − e−
B1−1
B1

(1− 1
e )) ≈ 0.469

better than previous work 2 [10] [12] [13].
• Besides theoretical guarantees, our algorithms also

exhibit favorable performances in experiments. Specifically,
extensive experiments are conducted on real-world social
networks to evaluate the proposed algorithms. The results
show that our adaptive algorithms achieve much larger
influence spread than non-adaptive and other adaptive al-
gorithms (up to a maximum of 116%), and meanwhile are
scalable to large networks.

The rest of the paper is organized as follows. Impor-
tant milestones are reviewed in Section 2. We describe the
model in Section 3. The non-adaptive and adaptive cases are
formulated in Section 4. In Section 5, we analyze the non-
adaptive case. And the adaptive case is studied in Section
6. Numerous experiments are conducted in Section 7. And
we conclude the paper in Section 8. Due to space limitation,
some technical proofs and experimental results are deferred
to the supplemental file.

2 RELATED WORK

Domingos and Richardson [4] took the head in exploring the
peer influence among customers by modeling markets as
social networks. They attempted to maximize the cascade of
purchasing behavior by targeting a subset of users. Kempe
et al. [1] further formulated the well-known influence max-
imization problem. The greedy algorithm is proposed with
proven performance guarantee (1 − e−1) [15]. No polyno-
mial time algorithm could have a better performance, unless
P = NP [16]. Since then, extensive works have been done
in different perspectives [17] [3] [5] [18] [19].

2. Although [11] achieves an approximation ratio of 1 − 1
e

, its diffu-
sion model, called the voter model, is much simpler where the influence
of each user is simply additive and could be anticipated in advance.
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Bharathi et al. analyzed the game of competing informa-
tion diffusions in one social network [2]. Li et al. considered
location information in influence maximization [20]. Tang
et al. presented the near-optimal time algorithm to solve
the influence maximization problem for triggering models
without hurting the approximation ratio [21]. Estimation
techniques are applied in [7] to improve the empirical
efficiency. Yang et al. [8] assumed that the discount can be
fractional instead of only 0 or 1. Chen et al. [22] improved the
influence maximization in both running time and cascade
size. Budgeted influence maximization was studied in [6]
where each user is associated with a cost for selection. A
synthetic survey is provided in [23].

However, the access limitation is ignored by all the above
works. Seeman et al. [13] studied the seed selection based
on the intuition of FP, which is first discovered by Feld [14]
and further investigated point-wisely by numerous works
[24] [25] [26]. Badanidiyuru et al. considered monotone
submodular objective functions and achieve a (1 − e−1)2

approximation ratio [10]. In [11], by relaxing the diffusion
model and discount setting, Horel et al. made impressive
progress on algorithm design and experimental validation.

Adaptive seeding is an emerging topic in influence
maximization. Users are seeded one after another based
on the existing seeding and diffusion results. Golovin et al.
[27] studied the adaptive submodularity and showed that a
greedy policy obtains a (1− e−1) approximation ratio. Yuan
and Tang proposed the adaptive algorithm based on the
greedy policy [9]. In [28], only partial feedback is observed
before seeding the next user.

Our work is distinct from existing works [10] [11] [12]
[13] mainly in two aspects. First, the problem is comprehen-
sively studied under practical settings, where users accept
the fine-grained discounts probabilistically and the diffu-
sion process is depicted by the well-received independent
cascade model. On this basis, algorithms are proposed with
theoretical guarantee and evaluated on real-world datasets.
Second, all existing solutions to the access limitation can be
classified as non-adaptive category. However, not only non-
adaptive solution but also adaptive solution is presented in
our paper to maximize the influence spread under access
limitation.

3 MODEL

A social network is denoted as the graph G(V,E), where V
is the set of users and E records the relationships between
users. Initially accessible users are denoted as X ⊆ V . For
any user u ∈ V , let N(u) denote the neighborhood of
u. For any subset of users T ⊆ V , N(T ) represents the
neighborhood of T , defined as N(T ) ≡

⋃
u∈T

N(u) \ T .

We start the influence diffusion by allocating discounts
to users, which is described by the two-stage seeding model.
If a user accepts the discount allocated, we say it becomes
a seed. A set of seeds forms a seed set. Especially, we call the
seed in stage 1 an agent. The diffusion process is described
by the independent cascade model.

The two-stage seeding model contains the recruitment
stage (stage 1) and the trigger stage (stage 2). The predefined

budget is B1 in stage 1 and B2 in stage 2 3 , with the total
budget being B = B1 +B2. The seeding process in the two-
stage model is shown as follows.
• the recruitment stage: We seed users in X with given

budget B1, to recruit agents whose friends are possibly
more influential. Some users become the agent and
bring their friends (newly reachable users) into this
campaign in the meantime by forwarding the promo-
tion link, providing address information for mail, even
helping hand over the sample, etc..
• the trigger stage: We seed newly reachable users with

budget B2 to trigger the largest influence cascade.

Fig. 1. An example of the two-stage seeding model. We first seed users
in X and then reach their neighbors N(X) for further seeding.

The discount allocated to user u is denoted as cu.
Whether user u accepts the discount is depicted by the seed
probability function pu(cu). We assume pu(·) satisfies the
four properties: (1) pu(0) = 0; (2) pu(1) = 1; (3) pu(·)
is monotonically nondecreasing; (4) pu(·) is continuously
differentiable.

In both stages, we allocate the budget to seed users,
but the intention is different. In the recruitment stage, users
are seeded to recruit agents such that we can access their
influential neighbors. In the trigger stage, where the influ-
ence diffusion really begins, we seed the newly reached
neighbors to maximize the influence diffusion. In classical
influence maximization, we are restricted to seed users only
in X without the privilege to reach more influential users,
resulting in limited cascade size.

The diffusion model we adopt is the independent cascade
model, which has been one of the most popular models since
formally proposed in [1]. In the independent cascade model,
each edge (u, v) in the graph G(V,E) is associated with a
propagation probability puv , indicating the probability that
u influences v after u gets influenced first. Note that, no
matter u succeeds or not, it cannot attempt to influence v

3. It is tempting to study our problem under variable B1 and B2,
which however makes our problem even more challenging. It is also
worth noting that our current solution could provide valuable hints
to the case of unfixed B1 and B2. Specifically, we allow an error of c
when optimizing B1 (B2 = B − B1) by requiring B1 to take discrete
values {c, 2c, 3c, . . . , [B/c] · c}. Then, the problem is reduced to the
current one where B1 and B2 are pre-known. Thus we could derive
the optimal combination of B1 and B2 by invoking our solutions [B/c]
times. Besides, we would also like to provide a heuristic method with
user’s degree as the proxy of its influence like [11]. To explain, we
figure out the average degree of X and N(X), and then determine B1,
B2 according to the proportion of their average degrees.
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TABLE 1
Frequently Used Notations

Model
G(V,E) A directed graph, where V and E represent users

and the relationships respectively
N(T ) The neighborhood of T
X Initially reachable users
pu(cu) The probability that user u accepts discount cu
I(T ) The expected number of users influenced by seed

set T
Non-adaptive Case
S The set of users who becomes agents in X
C1 (or C2) The discount allocation in stage 1 (or stage 2)
Pr(S;C1, X) The probability that users in S become agents if C1

is carried out in X
Q(C2;N(S)) The expected number of users influenced if C2 is

carried out in given N(S)

f(C1;X) The expected number of users influenced if C1 is
carried out in X

Adaptive Case
D The set of discounts that can be adopted
Y The action space in stage 1
ψ The action adopted with sequence in stage 1

(dom(ψ) denotes the set of actions)
λ The seeding realization in stage 2
φ The diffusion realization
π The adaptive seeding policy
σ̂(ψ, (λp, φp)) The expected number of users influenced by π

under realizations λ, φ
∆(y|ψ) The marginal benefit brought by y
R Newly reachable users in stage 2 in each round
Z The action space in stage 2 in each round

again. The influence of different edges is independent of
each other. Once user v gets influenced, it will not change its
state. On this basis, starting from a seed set T , the diffusion
expands in discrete steps as follows. In each step, the newly
influenced user, u, tries to influence its neighbors, e.g. v,
along the edge (u, v), and succeeds with corresponding
probability puv . The process goes on in this way, until no
user is further influenced. The influence of the seed set
T is denoted as I(T ), which is the expected number of
users totally influenced, where I(·) is the influence function
I : 2V → R. As can be seen, the influence spread is
closely related to the graph and propagation probabilities
along edges. Thus, in computation of I(S), we need full
knowledge of the influence graph, i.e., G(V,E) and puv
(∀(u, v) ∈ E).

To provide theoretical support for our model, by Lemma
1 we prove that the neighbors N(X) have higher degree
than the small set of users X in expectation. To the best of
our knowledge, this is the first time that the FP phenomenon
is proven to hold set-wisely in any large network. It is easy
to see that the traditional point-wise FP is a special case of
Lemma 1 by letting X contain only one user.

Lemma 1. Given any connected network G(V,E), consider a
set of users X where each user is selected from V with probability
p → 0, then the friendship paradox phenomenon exists between
X and N(X), i.e., the average degree of X is no larger than that
of N(X) in expectation.

Proof. Please refer to Section 2.1 of the supplemental file.

4 PROBLEM FORMULATION

From the model, we can see that the influence maximization
in the two-stage model consists of three sequential pro-
cesses: seeding in stage 1, seeding in stage 2 and influence
diffusion from stage 2. In this section, we will study two
ways of seeding: the non-adaptive case and the adaptive
case. In the first case, a process goes on after the previous
process is finished. In the second case, the three processes
iteratively go on in a circle. In each round, only part of the
process is done and users are seeded based on the result of
previous seeding and diffusion processes.

4.1 Non-adaptive Case

We first seed users in X to recruit agents. The discount
allocation is denoted as the m-dimensional vector C1 =
(c1, c2, · · · , cm), where m = |X|. Let S denote users who
become agents in X . Then, N(S) denotes friends newly
reached inN(X). We next allocate discounts to newly reach-
able users N(S). Similarly, the discount allocation in N(S)
is denoted asC2 = (c1, c2, · · · , ck), where k = |N(S)|. ∀ci in
C1 orC2, ci ∈ [0, 1], i.e. the discounts are fractional. It is easy
to see that the seed set in each stage is probabilistic, since
users accept discounts with probability function pu(cu).

Let us consider stage 1, given the allocation C1 in X ,
the probability that the subset of users S ⊆ X accepts the
discounts is

Pr(S;C1, X) =
∏
u∈S

pu(cu)
∏

v∈X\S

(1− pv(cv)). (1)

Following the same technique, given allocation C2 in N(S),
the probability that T ⊆ N(S) becomes the seed set in stage
2 is

Pr(T ;C2, N(S)) =
∏
u∈T

pu(cu)
∏

v∈N(S)\T

(1− pv(cv)). (2)

Then, the influence diffusion starts from the seed set T and
I(T ) users get influenced in expectation. In stage 2, given
newly reachable users N(S) and the discount allocation C2,
we can obtain the expected number of users influenced,
formally expressed in Equation (3),

Q(C2;N(S)) =
∑

T⊆N(S)

Pr(T ;C2, N(S))I(T ). (3)

Under a fixed N(S), we only need to find the optimal
allocation C2 to maximize Q(C2;N(S)) with budget con-
straint B2. Note that N(S) is probabilistically determined
by the discount allocation C1 in stage 1. To maximize the
influence spread, we have to first optimize the influence
spread over C1 with stage 2 collectively considered. Given
initially accessible users X , the expected influence spread
with regard to C1 is

f(C1;X) =
∑
S⊆X

Pr(S;C1, X) maxQ(C2;N(S)). (4)

In summary, we optimize the influence spread over C1 with
possible seeding optimization in stage 2 considered. With
the allocation C1, we obtain newly reachable users N(S)
and further derive the optimal allocation C2 to maximize
the influence spread.
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Under budget constraints B1 and B2, the non-adaptive
influence maximization problem (NIM) can be formally
formulated as follows.

NIM :

max f(C1;X) max Q(C2;N(S))

s.t. ∀u ∈ X, cu∈ [0, 1] s.t. ∀u ∈ N(S), cu∈ [0, 1]∑
u∈X

cu ≤ B1

∑
u∈N(S)

cu ≤ B2

(5)
To help the reader comprehend the idea of the non-

adaptive case, we provide an example in Section 1.1 of the
supplemental file.

4.2 Adaptive Case

In the adaptive case, users in stage 1 are seeded sequentially,
instead of computing a discount allocation of X all at once.
The seeding process is defined on an action space Y :=
X × D, where D = {d1, d2, · · · , dl} is the set of l discrete
discount rates that can be adopted. ∀di ∈ D, di ∈ [0, 1] and
max{di ∈ D} = 1. Selecting the action y = (v(y), d(y)) ∈
Y means seeding user v(y) with discount d(y). Once v(y)
takes the discount, we reach its neighbors and carry out an
allocation therein. Note that, the seeding processes in two
stages are both based on previous diffusion results. We next
introduce three basic concepts of our study.

Definition 1. (Seeding Process ψ). ψ sequentially records the
actions adopted in stage 1 which aim at reaching influential users
in N(X). Let dom(ψ) denote the set of actions without sequence.

Definition 2. (Seeding Realization λ). In stage 2, for each
user v in N(X), v will either accept the given discount
cv ∈ [0, 1] (denoted as “1”) with probability pv(cv), or reject
it (denoted as “0”) with probability 1 − pv(cv). The decisions of
users after being seeded in stage 2 are denoted by the function
λ : (N(X), [0, 1]|N(X)|)→ {0, 1}.

Definition 3. (Diffusion Realization φ). For each edge
(u, v) ∈ E, it is either in “live” state (denoted as “1”) or in
“dead” state (denoted as “0”), indicating the influence through
(u, v) is successful or not. The states of edges are denoted by the
function φ : E → {0, 1}.

With the above preliminaries, we are ready to elaborate
the sequential seeding process. Each time, we start from
stage 1 and push the partial seeding process ψp one step
forward by adopting an action y∗ = (v(y∗), d(y∗)) from Y
(i.e., probing user v(y∗) with discount d(y∗)). If the user
refuses the discount d(y∗), we delete y∗ from action space
Y and move to the next round. Note that the budget is not
wasted in this case, “refuse” means “reuse”. For example,
we instantiate discounts as vouchers. The discount will not
be used (i.e., “reuse”) if the user does not accept and apply
the voucher to become a seed (i.e., “refuse”). For the case
of providing samples, we can forward information of the
sample to inquire users’ will. If the user is not satisfied (i.e.,
“refuse”), we will not mail the sample to him/her and the
budget is not wasted (i.e., “reuse”).

On the contrary, if the user v(y∗) accepts d(y∗) and
becomes a seed, we can reach its neighbors in stage 2.
Meanwhile, actions about v(y∗) are abandoned and d(y∗)

is subtracted from B1. Next we allocate discounts in newly
reachable users R with some budgets from B2. Specifically,
the budget drawn from B2 only depends on the intrinsic
property of v(y∗), say the discount the user expects or
the number of its neighbors. It is assumed that neighbors
brought by each user in X are non-overlapping, since users
in X are usually random. Otherwise, for a common neigh-
bor, we can designate it as one user’s neighbor. Some neigh-
bors will accept the discounts and become seeds, forming
the seed set. Then, a partial diffusion starts from the seed
set and explores the state of edges exiting influenced users.

Definition 4. (Adaptive Seeding Policy π). The adaptive pol-
icy is the function π : σ(ψp, (λp, φp)) → Y . Given observation
σ(ψp, (λp, φp)), the policy π will select an action from Y .

After each round of seeding, ψp observes a partial re-
alization (λp, φp). The set of users influenced under ψp
is denoted as σ(ψp, (λp, φp)), and the number of users
influenced is σ̂(ψp, (λp, φp)). Due to the probability in users
and edges, realizations λ and φ are both probabilistic. The
prior joint probability distribution of seeding realization
and diffusion realization is assumed to be p((λ, φ)) :=
P ((Λ,Φ) = (λ, φ)), where Λ is a random seeding realization
and Φ is a random diffusion realization. Under realizations
λ and φ, the seeding process determined by π is denoted
as ψ(π|(λ, φ)). The expected number of users influenced
by π is σ̂(π) = E[σ̂(ψ(π|(Λ,Φ)), (Λ,Φ))], where the ex-
pectation is calculated with respect to p((λ, φ)). We denote
the discount allocated to user u ∈ X under π is c(u|π).
The influence maximization in the adaptive case (AIM) is a
constrained optimization problem formulated as follows.

AIM :

max σ̂(π)

s.t. ∀u ∈ X, c(u|π) ∈ D,∀(λ, φ)

∀v ∈ N(X), cv ∈ [0, 1],∀(λ, φ)∑
u∈X

c(u|π) ≤ B1,∀(λ, φ)∑
v∈N(X)

cv ≤ B2,∀(λ, φ)

(6)

For the reader’s comprehension, we provide an illustra-
tive example in Section 1.2 of the supplemental file.

5 NON-ADAPTIVE INFLUENCE MAXIMIZATION

Based on the non-adaptive problem formulated, in this
section we look into the problem and present its solution.
We first analyze the properties of NIM and transform the
inequality constraints in Formula (5) into equality con-
straints. Then, we present the two-stage coordinate descent
algorithm to solve the problem.

5.1 Properties of NIM

We find that the optimization problem in NIM is NP-hard by
Lemma 2. Therefore, NIM can not be solved in polynomial
time unless P = NP .

Lemma 2. Finding the optimal discount allocation in two stages
in NIM is NP-hard.
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Lemma 3 shows that under the same budget B2, if we
reach more users in stage 2, the maximal influence spread
will be larger, since we have more seeding options.

Lemma 3. With the same budget B2, if T1 ⊆ T2, then
maxQ(C2;T1) ≤ maxQ(C2;T2).

The proofs of Lemma 2 and 3 are provided in Sections
2.2 and 2.3 of the supplemental file respectively. Recall that
C1 = (c1, c2, · · · , cm) andC2 = (c1, c2, · · · , ck). Let us write
C ′1 = (c′1, · · · , c′m) and C ′2 = (c′1, · · · , c′k). For C1 and C ′1
(resp. C2 and C ′2), if ∀i, ci ≥ c′i, we denote C1 ≥ C ′1 (resp.
C2 ≥ C ′2). On this basis, we have the following theorem.

Theorem 1. Monotonicity property holds in both stages, i.e.,
(1) If C2 ≥ C ′2, then Q(C2;N(S)) ≥ Q(C ′2;N(S));
(2) If C1 ≥ C ′1, then f(C1;X) ≥ f(C ′1;X).

Proof. Please refer to Section 2.4 in the supplemental file.

Theorem 1 indicates that the more discount we allocate
to users in each stage, the larger the influence spread is.
Thus, we can draw the conclusion that the budget allocated
to both stages will be used up. By contradiction, if there is
remaining budget in stage 1 (resp. stage 2) while f (resp. Q)
is maximized, we can add it to current discount allocation
C1 (resp. C2). Then, f (resp. Q) is further increased, a
contradiction. Thus, the NIM is equivalent to the following
problem.

max f(C1;X) max Q(C2;N(S))

s.t. ∀u ∈ X, cu∈ [0, 1] s.t. ∀u ∈ N(S), cu∈ [0, 1]∑
u∈X

cu = B1

∑
u∈N(S)

cu = B2

(7)

5.2 Coordinate Descent Allocation
We attempt to decide the discount allocation in each stage
by the coordinate descent algorithm. Since the design of C1

should collectively consider the allocation in stage 2, for
readability, we first explain how to decide the allocation in
stage 2. Following a similar idea, we design the allocation in
stage 1.

5.2.1 Coordinate Descent in Stage 2
Given the seed set S in stage 1 and the budget constraint
B2, the coordinate descent algorithm iteratively optimizes
Q(C2;N(S)) from an initial allocation in N(S), e.g., uni-
form allocation. In each iteration, we randomly pick two
users u and v, whose discounts are cu and cv respectively.
Then, we adjust the discounts between u and v to optimize
Q(C2;N(S)), with other users’ discounts fixed.

Let B′2 = cu + cv , B′2 is a constant during the rearrange-
ment. Similar to the expansion of the objective function in
[8], we could rewrite Q(C2;N(S)) w.r.t. cu as follows

Q(C2;N(S)) =
∑

T⊆N(S)\{u,v}

Pr(T ;C2, N(S) \ {u, v})·

{
[1− pu(cu)][1− pv(B′2 − cu)]I(T )

+ [1− pu(cu)]pv(B
′
2 − cu)I(T ∪ {v})

+ pu(cu)[1− pv(B′2 − cu)]I(T ∪ {u})

+ pu(cu)pv(B
′
2 − cu)I(T ∪ {u, v})

}
.

(8)

Thus,Q(C2;N(S)) is a function w.r.t. cu. Then, we can write
it as Q(cu). Due to 0 ≤ cu, cv ≤ 1 and cu + cv = B′2, we
have the constraint max(0, B′2 − 1) ≤ cu ≤ min(B′2, 1).

In each iteration, we obtain the new discount of u by
solving the following optimization problem. In the mean
time, cv is determined by cv = B′2 − cu.

max Q(cu)

s.t. max(0, B′2 − 1) ≤ ci ≤ min(B′2, 1)
(9)

It is an optimization over a single variable in a closed in-
terval. Since pu(·) and pv(·) are continuously differentiable,
Q(cu) is differentiable as well. Therefore, the discount cu
that maximizes Q(cu) must be in one of the three cases:
(1) the stationary points of Q(cu) in interval (max(0, B′2 −
1),min(B′2, 1)); (2) max(0, B′2−1); (3) min(B′2, 1). We check
the value of Q(cu) in the three cases and choose the optimal
one as the new discount allocated to user u.

Algorithm 1 The Coordinate Descent Algorithm CD(Q,B,T)
Input: Objective function Q(·), budget B, accessible users T
Output: Allocation C
1: Initialize C
2: while not converge do
3: Randomly pick users u and v ∈ T
4: B′ ← cu + cv
5: Find all stationary points x of Q(cu) in (max(0, B′ −

1),min(B′, 1))
6: cu ← argmax{x,max(0,B′−1),min(B′,1)}Q(cu)
7: cv ← B′ − cu
8: end while
9: Return C

The coordinate descent algorithm is described in Algo-
rithm 1. Its convergence is guaranteed, since Q(cu) is upper
bounded by the size of the network, and Q(cu) is monotoni-
cally increasing as the iteration goes on. Thus, the algorithm
will finally converge to a limit allocation. However, we can
not ensure the limit to be locally optimal, which depends on
the property of Q(cu). Even if the limit is locally optimal,
it may not be the global optimum, where different initial
allocations could be applied for improvement.

5.2.2 Coordinate Descent in Stage 1

Considering the hardness of computing the global optimum
of Q(C2; ·), which is needed in f(C1;X) by Eq. 4, we
would like to define a proxy function Q̂(C2; ·) which is
maximized by Alg. 1. Accordingly, the objective function
becomes f̂(C1;X). The coordinate descent allocation in
stage 1 follows the similar idea. We start from an arbitrary
allocation in X and optimize f̂(C1;X) iteratively. In each
iteration, we randomly pick two users i, j and adjust the
discounts between them with other discounts fixed. Let
B′1 = ci + cj , B′1 is a constant during the rearrangement.
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Then, f̂(C1;X) can be written as

f̂(C1;X) =
∑

S⊆X\{i,j}

Pr(S;C1, X \ {i, j})·{
[1−pi(ci)][1−pj(B′1−ci)] max Q̂(C2;N(S))

+ [1−pi(ci)]pj(B′1−ci) max Q̂(C2;N(S ∪ {j}))
+ pi(ci)[1−pj(B′1−ci)] max Q̂(C2;N(S ∪ {i}))

+ pi(ci)pj(B
′
1−ci) max Q̂(C2;N(S ∪ {i, j}))

}
.

(10)

To handle f̂(C1;X), we need to optimize Q̂(C2; ·) and
estimate its influence spread. Note that the optimal alloca-
tion of Q̂(C2; ·) could be obtained by Alg. 1. To estimate the
resultant influence spread, we apply a polling based method
in Section 3 of the supplementary file. Analogous to the
analysis in stage 2, f̂(C1;X) can be written as f̂(ci). In each
iteration, we obtain the new discount of i by solving the
following optimization problem in the same way as stage 2.
Meanwhile, cj is determined according to cj = B′1 − ci.

max f̂(ci)

s.t. max(0, B′1 − 1) ≤ ci ≤ min(B′1, 1)
(11)

A framework of deciding discounts with coordinate
descent algorithm is established in Algorithm 2. We first
design the allocation in stage 1 with stage 2 collectively
considered. Then, based on the seeding result in stage 1,
we determine the allocation in stage 2.

Algorithm 2 The Two-Stage Coordinate Descent Framework
Input: Budget B1, B2, initially reachable users X
Output: Allocation C1, C2

1: C1 ← CD(f̂(C1;X), B1, X)
2: Seed users in X with C1

3: S ← users in X who accept discounts
4: C2 ← CD(Q̂(C2;N(S)), B2, N(S))
5: Return C1, C2

6 ADAPTIVE INFLUENCE MAXIMIZATION

In the adaptive case, the seeding and diffusion processes
iteratively go on in a circle. In each round, one user is seeded
in stage 1. Discounts are allocated to the newly reached
neighbors in stage 2, and then the influence spread ex-
pands. The adaptive case is studied in two discount settings:
discrete-continuous setting and discrete-discrete setting.

6.1 Discrete-Continuous Setting
Discrete-Continuous Setting: Users in stage 1 are probed
with actions from Y = X ×D, where D = {d1, d2, · · · , dl}
is the set of optional discount rates (discrete). In stage 2,
discounts of newly reachable users take value in interval
[0, 1] (continuous).

6.1.1 Seeding Strategy
In this subsection, we first specify the selection of actions
in stage 1. Given the previous seeding process ψp in stage
1, recall that σ(ψp, (λp, φp)) denotes the set of influenced
users under ψp. Without causing ambiguity, we will write

σ(ψp) = σ(ψp, (λp, φp)). Then, the induced graph of unin-
fluenced users V \σ(ψp) can be denoted asG(V \σ(ψp)). Let
∆(y|ψp) denote the expected number of users influenced in
G(V \ σ(ψp)), if v(y) becomes the seed and discounts are
allocated to v(y)’s newly reached neighbors. ∆(y|ψ) is the
marginal benefit brought by y, expressed as

∆(y|ψp) :=E[σ̂(ψp ∪ {y}, (Λ,Φ))−
σ̂(ψp, (Λ,Φ))|(Λ,Φ) ∼ ψp],

(12)

where (Λ,Φ) ∼ ψp denotes random realizations that contain
the existing realization observed by ψp, and the expectation
is taken with respect to p((λ, φ)) := P ((Λ,Φ) = (λ, φ)). In
each round, we select the action that maximizes the benefit-
to-cost ratio with the remaining budget, i.e.

y∗ = argmax
y∈Y

∆(y|ψp)
d(y)

. (13)

Supposing the targeted user v(y∗) accepts the discount, we
reach its neighbors and come to stage 2, where we further
allocate discounts to newly reached neighbors R according
to the coordinate descent algorithm CD(·). However, if
the user refuses the discount, we remove y∗ from Y and
proceed to the next round. Based on the above description,
the pseudo-code is presented in Algorithm 3 πgreedy. The
DCA(·) function in Algorithm 3 is presented in Algorithm
4, which describes the actions triggered after action y∗ is
accepted. The framework of πgreedy will be inherited in
the subsequent adaptive greedy algorithms, except some
modifications.

Algorithm 3 The Adaptive Greedy Algorithm πgreedy

Input: Budget B1, B2, action space Y = X ×D
Output: Accepted actions P1, allocation C2

1: Initialize P1 ← ∅, C2 ← 0
2: while B1 ≥ 0 do
3: if ∃y ∈ Y s.t. d(y) ≤ B1 then
4: Select y∗ = argmaxy∈Y

∆(y|ψp)

d(y)
s.t. d(y) ≤ B1,

5: Probe v(y∗) with discount d(y∗)
6: if v(y∗) accepts d(y∗) then
7: R← newly reachable users
8: Cp2 ← DCA(R, y∗, P1, B1, Y )
9: Update C2 with Cp2

10: else
11: Y ← Y \ y∗
12: end if
13: end if
14: end while
15: Return P1, C2

Algorithm 4 D-C Allocation DCA(R, y∗, P1, B1, Y )

Input: Newly reachable users R, action newly accepted y∗,
accepted actions P1, remaining budget B1, current action
space Y

Output: Allocation Cp2
1: Initialize Cp2
2: P1 ← P1 ∪ y∗; B1 ← B1 − d(y∗)
3: Y ← Y \ {y|v(y) = v(y∗)}
4: Cp2 ← CD(Q̂(Cp2 ;R), B2

B−B2
× d(y∗), R)

5: Return Cp2

Definition 5. (Adaptive Submodularity). The function σ̂ is
adaptive submodular with respect to p((λ, φ)), if for all ψ ⊆
ψ′(i.e.ψ is a subprocess of ψ′), and ∀y ∈ Y \ dom(ψ), we have
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∆(y|ψ) ≥ ∆(y|ψ′).

Furthermore, if for all ψ and all y ∈ Y , ∆(y|ψ) ≥ 0 holds, then
σ̂ is adaptive monotone.

By Lemma 4, we find that σ̂(·|(λ, φ)) is adaptive sub-
modular and adaptive monotone, where the proof is de-
ferred to Section 2.5 of the supplemental file. Since a non-
negative linear combination of monotone adaptive submod-
ular functions is still monotone adaptive submodular, we
have σ̂(·) is monotone and adaptive submodular.

Lemma 4. σ̂(·|(λ, φ)) is adaptive monotone and adaptive sub-
modular, under any realization (λ, φ).

6.1.2 Relaxation Analysis
Following a similar idea of analyzing the adaptive algorithm
in [9], we relax the seeding process in stage 1 by assuming
that the minimum discount rate dmin(u) ∈ D desired by
each user u is pre-known. In the seeding process, if u
is probed with a discount no smaller than dmin(u), then
u will accept it and become a seed, and vice versa. To
maximize the benefit-to-cost ratio, each user will be probed
from small discounts. By the definition of dmin(u), discounts
smaller than dmin(u) will be rejected. When the discount
becomes dmin(u), the user will accept it and become the
seed, and polices with higher discount are abandoned. Thus,
it becomes meaningless to probe user u with discounts
higher or lower than dmin(u). And, the action space is
reduced to Y relaxed = {(u, dmin(u)), u ∈ X}. We denote
the adaptive greedy algorithm under the relaxed setting as
π

greedy
relaxed. In each round, we select an action y∗ from Y relaxed

that maximizes the benefit-to-cost ratio ∆(y|ψp)
dmin(v(y)) . Once an

action in Y relaxed is adopted, the user will become a seed
definitely, since dmin(u) is the desired discount of user u.
The subsequent seeding strategy in newly reachable users
remains unchanged.

With the relaxation analysis, we find that the seed sets
of the relaxed setting and the original setting are the same
in stage 1 by Lemma 5, which is similar to [9]. This lemma
is proven by mathematical induction in Section 2.6 of the
supplemental file.

Lemma 5. Under any realization (λ, φ), πgreedy
relaxed yields the same

seed set in stage 1 as πgreedy.

Let πOPT denote the optimal policy under the discrete-
continuous setting. With the adaptive submodularity of σ̂(·)
and Lemma 5, we obtain the performance guarantee of the
greedy algorithm πgreedy in Theorem 2.

Theorem 2. If global optimality is obtained in stage 2 in each
round, then the adaptive greedy policy πgreedy obtains at least (1−
e−

B1−1
B1 ) of the value of the optimal policy πOPT,

σ̂(πgreedy) ≥ (1− e−
B1−1
B1 )σ̂(πOPT).

Proof. Please refer to Section 2.7 in the supplemental file.

6.2 Discrete-Discrete Setting

In the previous setting, the coordinate descent algorithm is
applied to decide the continuous allocation in stage 2, which

needs numerous iterative optimizations. In this subsection,
we introduce a discrete solution in stage 2.

Discrete-Discrete Setting: In each stage, we select ac-
tions from an action space defined by the Cartesian product
of users and discount rates D. Thus, the discounts in both
stages are discrete.

Definition 6. (Submodularity) For a real-valued function h(·)
defined on subsets of a finite ground set G. If for all A ⊆ B ⊆ G,
and for all x ∈ G \B, we have

h(A ∪ {x})− h(A) ≥ h(B ∪ {x})− h(B).

Then, we say h(·) is submodular. Furthermore, if h(A) ≤ h(B)
holds for all A ⊆ B ⊆ G, h(·) is said to be monotone.

The seeding process in stage 1 is still sequential. In each
round, we select an action y∗ from Y := X × D. If v(y∗)
refuses the discount d(y∗), we delete y∗ from Y and move to
the next round. If v(y∗) accepts it and becomes a seed, some
users become newly reachable, denoted as R. An action
space Z = R × D is defined in stage 2. We will select a
subset of actions L ⊆ Z to seed users in R under some
budgets drawn from B2. The budget only depends on the
intrinsic property of v(y∗), just like the discrete-continuous
setting. Different from selecting actions sequentially in stage
1, we decide actions in stage 2 all at once without observing
the seeding and diffusion results of each action. Because in
realistic scenario, we are not likely to have so much time to
observe the diffusion of each action in stage 2.

We next show how to select the set of actions in stage
2. Let d(u|L) denote the discount allocated to user u under
actions L. Analogous to the definition in Equations (1) and
(3), we define the probability that a subset of users T ⊆ R
accept discounts as

Pr(T ;L,R) =
∏
u∈R

pu(d(u|L))
∏

v∈R\S

(1− pv(d(v|L))). (14)

Given the partial seeding process ψp in stage 1 and the set
of influenced users σ(ψp), we denote the expected number
of users newly influenced by T as IG(V \σ(ψp))(T ). Then, the
number of users influenced by actions L is

Q(L;R) =
∑
T⊆R

Pr(T ;L,R)IG(V \σ(ψp))(T ). (15)

We attempt to find a set of actions that maximize the in-
fluence spread. However, we find that maximizing Q(L;R)
is NP-hard by Lemma 6.

Lemma 6. Finding the optimal set of actions in stage 2 is NP-
hard.

However, we can prove the monotonicity and submod-
ularity of Q(L;R) by Lemma 7. Since Q(L;R) is monotone
and submodular, we are motivated to design the approx-
imate algorithm GS(R, y∗, P1, B1, Y ) in Algorithm 5 to
determine the actions in stage 2.

Lemma 7. Q(L;R) is monotone and submodular w.r.t. L.

The selection of action y∗ in stage 1 is similar to the
discrete-continuous setting. We select the one that max-
imizes the benefit-to-cost ratio ∆(y|ψp)

d(y) . Note that, when
calculating ∆(y|ψp), discounts of users in stage 2 are de-
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termined by Algorithm 5 rather than the coordinate descent
algorithm.

We continue to examine the property of σ̂(·|(λ, φ)) in
the discrete-discrete setting and find that it is still adaptive
submodular by Lemma 8.

Lemma 8. In the Discrete-Discrete Setting, σ̂(·|(λ, φ)) is still
adaptive submodular, under any realization (λ, φ).

For readability, the proofs of Lemma 6, 7 and 8 in this
subsection are deferred to Sections 2.8, 2.9 and 2.10 of
the supplemental file respectively. Based on the above de-
scription, we obtain the adaptive greedy algorithm π

greedy
discrete

in the discrete-discrete setting. Since the only difference
from πgreedy lies in the allocation in stage 2, we can
derive π

greedy
discrete by replacing DCA(R, y∗, P1, B1, Y ) with

GS(R, y∗, P1, B1, Y ). For the sake of the space, we omit
the detailed description here. Let πOPT

discrete denote the optimal
policy. With the adaptive submodularity in stage 1 and sub-
modularity in stage 2, we obtain the performance guarantee
of πgreedy

discrete in Theorem 3.

Algorithm 5 The Greedy Selection GS(R, y∗, P1, B1, Y )

Input: Newly reachable users R, action newly accepted y∗,
actions accepted P1, remaining budget B1, current action
space Y

Output: Actions P2

1: Initialize P2 ← ∅
2: P1 ← P1 ∪ {y∗}; B1 ← B1 − d(y∗)
3: Y ← Y \ {y|v(y) = v(y∗)}
4: S1 ← ∅, Z ← R × D, S2 ← argmaxz∈Z{Q({z};R)|z ∈

Z, d(z) ≤ B2
B−B2

× d(y∗)}
5: while

∑
z∈S1

d(z) ≤ B2
B−B2

× d(y∗) do
6: z∗ ← argmaxz∈Z

Q(S1∪z)−Q(S1)
d(z)

7: if d(z∗) +
∑
z∈S1

d(z) ≤ B2
B−B2

d(y∗) then
8: S1 ← S1 ∪ {z∗}, Z ← Z \ {z∗}
9: end if

10: end while
11: P2 ← argmaxS∈{S1,S2}Q(S;R)
12: Return P2

Theorem 3. The greedy policy π
greedy
discrete obtains at least (1 −

e−
B1−1
2B1

(1− 1
e )) of the value of πOPT

discrete,

σ̂(π
greedy
discrete) ≥ (1− e−

B1−1
2B1

(1− 1
e ))σ̂(πOPT

discrete).

Proof. Please refer to Section 2.11 in the supplemental file.

The performance guarantee of πgreedy
discrete is not appealing

enough. The enumeration method can be further applied to
improve the approximation ratio. In fact, the size of newly
reachable users is relatively small compared with the whole
network, hence, the enumeration will not be so computa-
tionally costly. The modified greedy algorithm in stage 2
is described in Algorithm 6 whose approximation ratio is
(1−e−1) [29]. The complete algorithm π

greedy
enum can be derived

by replacingDCA(R, y∗, P1, B1, Y ) in Algorithm 3 with the
MGS(R, y∗, P1, B1, Y ). Following similar argument in the
proof of Theorem 3, we obtain the approximation ratio of
π

greedy
enum in Theorem 4.

Theorem 4. The policy πgreedy
enum achieves an approximation ratio

of 1− e−
B1−1
B1

(1− 1
e ).

Algorithm 6 Modified Greedy MGS(R, y∗, P1, B1, Y )

Input: Newly reachable users R, action newly accepted y∗,
actions accepted P1, remaining budget B1, current action
space Y

Output: Actions P2

1: P1 ← P1 ∪ {y∗}; B1 ← B1 − d(y∗)
2: Y ← Y \ {y|v(y) = v(y∗)}
3: S1 ← ∅, Z ← R ×D, S2 ← argmax{Q(A;R)|A ⊆ Z, |A| <

3,
∑
z∈A d(z) ≤ B2

B−B2
d(y∗)}

4: for A ⊆ Z, |A| = 3,
∑
z∈A d(z) ≤ B2

B−B2
d(y∗) do

5: Z′ ← Z \A
6: while Z′ 6= ∅ do
7: z∗ ← argmaxz∈Z′

Q(A∪z;R)−Q(A;R)
d(z)

8: if d(z∗) +
∑
z∈A d(z) ≤ B2

B−B2
d(y∗) then

9: A← A ∪ {z∗}
10: end if
11: Z′ ← Z′ \ z∗
12: end while
13: if Q(A) > Q(S1) then
14: S1 ← A
15: end if
16: end for
17: P2 ← argmaxS∈{S1,S2}Q(S;R)
18: Return P2

7 EXPERIMENTS

In this section, we examine the performance of the proposed
algorithms on four real-world datasets. The purpose lies
in three parts. First, we compare the expected influence
spread of our two-stage algorithms with other algorithms
to show the advantage of our proposed algorithms. Second,
we examine the scalability of our algorithms with respect to
the total budget. Third, we test the sensitivity to different
settings of seed probability function. Fourth, the impact of
the friendship paradox is evaluated. All algorithms were
implemented in C# and simulated on a Linux x64 server
(Intel Xeon E5-2650 v2 @2.6Ghz, 128GB RAM).

7.1 Experimental setup
Dataset Description. We test our algorithms on four net-
works derived from SNAP [30]. The parameters of the four
datasets are presented in Table 2. Undirected networks are
converted to directed networks, which means that every
undirected edge (u, v) is replaced by two directed edges
(u, v) and (v, u), and the number of edges is doubled.
In each network, we randomly selected 100 nodes as the
initially accessible users X .

TABLE 2
Datasets

Datasets Nodes Edges Type θ

wiki-Vote 7,115 103,689 Directed 0.25M
ca-CondMat 23,133 186,936 Directed 2M
com-DBLP 317,080 1,049,866 Undirected 20M

soc-LiveJournal1 4,847,571 68,993,773 Directed 40M

Propagation Probability. The diffusion model adopted is
the independent cascade model, which is widely employed
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in the literature of influence maximization [7, 8, 21, 31]. Each
edge (u, v) is associated with a propagation probability puv ,
set to be α

in-degree of v , where α ∈ {0.6, 0.8, 1}. This setting is
quite common in existing works [1, 8, 9, 31].

Seed Probability Function. Recall that whether a user u
accepts the discount cu is captured by the seed probability
function pu(cu), which means the probability that u accepts
the discount cu and becomes a seed. User’s behavior is af-
fected by various factors, such as time and demand. The best
way to estimate the probability function may be learning
from data, which is out of the scope of our research. Thus,
we apply synthesized seed probability functions, which
satisfy the four properties mentioned in Section 3. For each
network, we randomly select 5% nodes and set pu(cu) with
pu(cu) = c2u, 10% nodes with pu(cu) = cu and 85% with
pu(cu) = 2cu − c2u.

Discount Rate. The action space is defined as the Carte-
sian product of users and discount rates D. In our ex-
periment, the discount rate D is set to be an arithmetic
progression from 10% to 100% with common difference 10%.
That is, 10 candidate discounts are considered.

Implementation. Influence estimation is frequently de-
manded in the algorithms to determine discount allocation.
To obtain an unbiased estimation, we adopt the polling
based technique proposed in [7] [21], where θ (given in
Table 2) reverse reachable sets are generated. For detailed
description, please refer to Section 3 of the supplemental file.
All the reported influence spreads are estimated by running
20K times Monte Carlo simulations.

7.2 Algorithms Evaluated

To validate the performance of our four algorithms, we
include six more algorithms for comparison. All the algo-
rithms are tested under budgets B ∈ {10, 20, 30, 40, 50}
with B1 : B2 = 1 : 4. For one-stage algorithms, the budget
B is all spent in X .
• Non-adaptive Algorithms

Random Friend (RF): We introduce RF as a basic two-
stage algorithm. We uniformly and randomly select B1

users in X as agents S. Then, B2 users are selected from
N(S) in a similar way.

Discrete Influence Maximization (IM): First applied by
Kempe et al. [1], IM is a classic algorithm with performance
guarantee 1− 1

e . Users inX are greedily selected in a manner
that, given the first k seeds, the user u, which maximizes the
expected marginal benefit I(T ∪ {u})− I(T ), is selected as
the (k + 1)-th seed.

Coordinate Descent (CD): This is a one-stage algorithm
carried out in initially accessible users X . Detailed de-
scription could be found in Algorithm 1. As for the initial
allocation, we first rank users inX with respect to the degree
in a non-increasing order. Then, the budget B is uniformly
allocated to the first 1.5B users. The number of iterations is
set to be 50, enough for the refinement in 100 nodes.

Two-stage CD (2CD): This is the two-stage algorithm
described in Algorithm 2. The initial allocation in each stage
is determined in the same way as CD. The number of
iterations is 10 in both stages.
• Adaptive Algorithms

Adaptive Selection (Ada): As the only one-stage al-
gorithm in the adaptive case, adapted from [9], Ada se-
quentially seeds users in X with budget B. Each time, we
select the action y from Y which maximizes the benefit-to-
cost ratio ∆(y|ψp)

d(y) , where ∆(y|ψp) is the expected influence
spread brought by v(y) under the previous diffusion result.

LP-Based Approach (LP): A two-stage algorithm pro-
posed in [11], where the degree of a user is regarded as
its influence. The maximization problem is formulated as
an integer linear programming. The solution returns an
allocation with (1− 1

e )-approximation ratio.
A-Greedy: Proposed in [32], A-Greedy is an adaptive

one-stage algorithm. Thus, we transform it into a two-stage
algorithm. In both stages, A-Greedy is applied to select the
seeds. The optimal seeding pattern A∗ is adopted, where
one user is selected each time and the next selection takes
place until no user is further influenced. The activation
probability fu of each user u in [32] is set to be 0.6.
πgreedy (Ada+CD): This two-stage algorithm is described

in detail in Alg. 3. The coordinate descent algorithm is
applied in newly reachable users. The initialization and
number of iterations are the same as the CD algorithm.
π

greedy
discrete (Ada+GS): The framework is the same as the

Ada+CD algorithm. But in stage 2, the coordinate descent
algorithm is replaced by the Greedy Selection in Alg. 5. It
is worth noting that the discount rate D in stage 2 becomes
{0.5, 1}, because we find that a fine-grained discount rate
with granularity 0.1 will lead to worse results. The explana-
tion is that greedy selection prefers giving small discounts
to many users, while the number of newly reachable users
is relatively small. Then, the budget is left, making the
experiment unfair.
πgreedy

enum (Ada+MGS): The actions in the second stage are
determined by the Modified Greedy Selection described in
Alg. 6. The discount rate in stage 2 remains to be {0.5, 1} for
the same reason.

7.3 Experimental Results
The ten algorithms are mainly evaluated on four metrics: (1)
the expected influence spread; (2) the scalability regarding
the total budget; (3) the sensitivity of algorithms with re-
spect to different settings of seed probability functions; (4)
the impact of the FP phenomenon. Due to space limitation,
the influence spread and scalability under α = 0.8 are
presented in Section 4 of the supplemental file.

7.3.1 Influence Spread
The expected influence spread of the non-adaptive case
and the adaptive case is presented in Fig. 2 and Fig. 3
respectively.
• Non-adaptive Case

From Fig. 2, we can see that CD performs better than
IM, since the discount allocation in CD is allowed to be frac-
tional and thus more fine-grained. It is a little surprising that
the simple two-stage algorithm RF shows larger influence
spread than the elaborate CD in most settings, except two
points in Wiki-Vote (α = 0.6, B = 10 and 30) due to its
randomness. The reason is that RF has access to influential
neighbors. As can be seen, the two-stage coordinate descent
algorithm outperforms the other three algorithms in all the
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Fig. 2. Influence Spread in the Non-adaptive Case.
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Fig. 3. Influence Spread in the Adaptive Case.

settings. The ratio between 2CD and the second best result
varies from 1.3 to nearly 3. This result is easy to understand
since 2CD not only has access to the influential neighbors
but also makes refinements in both stages.

Moreover, although the scale of the four datasets is quite
different, we find that the influence spread of one-stage
algorithms (i.e., CD and IM) is nearly in the same scale,
while the influence spread of two-stage algorithms scales as
the size of networks. We can infer that simply allocating
discounts to initially accessible users restricts the spread
of influence. Meanwhile, exploiting the friendship paradox
helps expand the influence spread.
• Adaptive Case

As can be seen from Fig. 3, in most settings the one-
stage adaptive algorithm Ada has the smallest influence
spread, since only initially accessible users are seeded. In
some settings, the LP algorithm is even worse than Ada,
especially in small datasets and small budgets, since in
LP the degree is directly regarded as the influence. This
treatment helps with the complexity but losses accuracy,

and causes possible blindness when selecting seeds. In A-
Greedy, the influence is unbiasedly estimated by the hyper-
graph. The result of A-Greedy is thus better than that of
LP. Our proposed three algorithms achieve larger influence
spread than the above three algorithms. The reason is
three-fold. First, the discount is fractional and thus more
fine-grained. Second, the influence is accurately estimated.
Third, the FP phenomenon is leveraged. There is an evident
gap between Ada+MGS and Ada+GS. This phenomenon
conforms with the theoretical result that the approximation
ratio of Ada+MGS is larger than Ada+GS. In the experiment,
Ada+CD shows smaller influence spread than Ada+GS
and Ada+MGS. However, we can not say that Ada+CD
is definitely inferior to the other two algorithms, since its
performance is closely related to the initial allocation. With
a better initial allocation and more iterations, Ada+CD could
deliver a better performance.

Comparing our four proposed algorithms, we can see
that adaptive algorithms yield larger influence spread than
2CD, except some minor points in the Wiki-Vote dataset.
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Fig. 4. Running Time in the Non-adaptive Case.
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Fig. 5. Running Time in the Adaptive Case.

The reason is that adaptive algorithms make the most of the
remaining budget by seeding the next user wisely based on
the observation on the previous influence spread.

7.3.2 Scalability
The scalability of algorithms in the non-adaptive case and
the adaptive case are reported in Fig. 4 and Fig. 5 respec-
tively. GBT is the building time of reversely reachable sets.
• Non-adaptive Case

According to Fig. 4, the running time of IM and CD is
almost the same as the GBT, since computing the allocation
in 100 users will not take too much time. With the increase of
the network size, the gap between 2CD and GBT decreases.
In the smallest dataset Wiki-Vote, the running time of 2CD
is about 20 times that of GBT. However, the ratio becomes
less than 1.3 in the largest dataset soc-Livejournal. The
reason is that the computation cost of the hyper-graph is
high, while the execution of the 2CD algorithm is relatively
efficient. It is worth noting that, the RF algorithm has the
least running time and the best scalability, since RF does not
need to build the hyper-graph. Thus, the simple two-stage
algorithm RF outperforms IM and CD in both influence
spread and scalability.
• Adaptive Case

It is shown in Fig. 5 that the running time of the adaptive
algorithms follows the sequence: Ada+CD > Ada+MGS >
Ada+GS > A-Greedy > Ada. We next explain the sequence
in an increasing order. The running time of Ada is the
smallest since it does not need to consider the allocation

in neighbors. A-Greedy computes the allocation in both
stages, so the running time is higher than Ada. The running
time of Ada+GS is larger than that of A-Greedy, since fine-
grained discounts incur more sophisticated computation. It
is not a surprise to see that Ada+MGS takes more time
than Ada+GS, since enumeration is applied in Ada+MGS.
As for Ada+CD, to estimate the benefit of each action,
numerous coordinate descent algorithms are carried out in
stage 2, incurring tremendous iterations. Thus, Ada+CD is
less efficient than Ada+MGS. Similar to the non-adaptive
case, the gap between algorithms and GBT is decreasing
as the network size grows, due to the same reason in the
non-adaptive case. The running time of LP is almost in the
same scale over the four satasets, since it is not based on the
hyper-graph and only needs to solve an LP problem.

From the results in both cases, we find that most time is
spent on building the hyper-graph. The execution time (GBT
not included) of the proposed algorithms is less than one
hour in all the cases except one point (B = 50 in Fig. 4(d)).
Generally, the running time of 2CD is larger than Ada+MGS
while smaller than Ada+CD. Thus, we can roughly obtain
the sequence of running time of the proposed algorithms:
Ada+CD > 2CD > Ada+MGS > Ada+GS.

7.3.3 Sensitivity

We also test the sensitivity of our proposed algorithms with
respect to different settings of seed probability functions.
To this end, we introduce a second setting with different
portion of seed probability functions. The previous setting
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TABLE 3
Sensitivity to the seed probability function

Dataset B 2CD Ada+CD Ada+GS Ada+MGS
S1 S2 Reduction S1 S2 Reduction S1 S2 Reduction S1 S2 Reduction

Wiki-Vote
10 67 57 14.9% 110 65 40.9% 79 70 11.4% 159 135 15.1%
20 146 98 32.9% 182 121 33.5% 125 97 22.4% 241 218 9.5%
30 171 119 30.4% 228 162 28.9% 201 170 15.4% 309 274 11.3%
40 239 177 25.9% 290 184 36.6% 251 206 17.9% 349 330 5.4%
50 293 208 29% 334 205 38.6% 292 272 6.8% 397 379 4.5%

Condmat
10 411 252 38.7% 618 321 48.1% 579 407 29.7% 665 566 14.9%
20 616 390 35.6% 953 558 41.4% 820 593 27.7% 985 872 11.5%
30 803 595 25.9% 1122 733 34.7% 1013 747 26.3% 1212 1099 9.3%
40 934 686 26.6% 1333 814 38.9% 1184 881 25.6% 1483 1282 13.6%
50 1132 863 23.8% 1465 859 41.3% 1376 1029 25.2% 1685 1498 11.1%

Dblp
10 358 251 29.9% 685 266 46.6% 543 345 36.5% 859 703 18.2%
20 802 581 27.6% 1287 553 57% 891 621 30.3% 1501 1176 21.7%
30 1019 724 28.9% 1852 851 54% 1332 880 33.9% 1953 1612 17.5%
40 1308 954 27.1% 2261 983 56.5% 1735 1322 23.8% 2403 2119 11.8%
50 1644 1201 26.9% 2608 1191 54.3% 2125 1607 24.4% 2793 2440 12.6%

Livejournal
10 1564 1073 31.4% 4591 2524 45% 4481 2626 41.4% 4610 3632 21.2%
20 3193 2333 26.9% 6405 4325 32.5% 6040 4159 31.1% 7199 6843 4.9%
30 5340 3222 39.7% 8686 5148 40.7% 7067 5114 27.6% 9523 8785 7.7%
40 6935 5462 21.2% 10831 6590 39.2% 7969 6776 15% 11310 10793 4.6%
50 7464 6280 15.9% 12913 7246 56.1% 9000 7541 16.2% 12781 12719 0.5%

TABLE 4
The impact of the friendship paradox phenomenon

Dataset B
Non-adaptive Adaptive

|X| = 100 |X| = 1000 |X| = 100 |X| = 1000
CD 2CD Increase CD 2CD Increase Ada Ada+MGS Increase Ada Ada+MGS Increase

Wiki-Vote
10 27 67 40 34 50 16 68 159 91 149 205 56
20 47 146 99 60 106 46 98 241 143 260 301 41
30 66 190 124 84 149 65 121 309 188 336 382 46
40 85 239 154 110 220 110 139 349 210 398 439 41
50 101 293 192 128 270 142 146 397 251 451 489 38

Condmat
10 67 411 344 83 135 52 206 665 459 453 652 199
20 130 616 486 156 295 139 292 985 693 725 1039 314
30 182 803 621 234 558 324 348 1272 924 935 1314 379
40 231 934 703 306 744 438 375 1483 1108 1105 1570 465
50 276 1132 856 377 762 385 375 1685 1310 1258 1774 516

Dblp
10 69 358 289 75 251 176 188 859 671 412 1126 714
20 131 802 671 146 680 534 275 1501 1226 657 2007 1350
30 185 1019 798 213 996 783 332 1953 1621 850 2763 1913
40 228 1308 1080 281 1157 876 360 2403 2043 1011 3417 2406
50 268 1644 1376 346 1424 1328 360 2793 2433 1159 4057 2898

Livejournal
10 138 1564 1426 237 1508 1271 408 4436 4028 980 24863 23883
20 256 3193 2937 425 2523 2098 550 7199 6649 1603 30029 28426
30 363 5340 4977 580 5389 4809 680 9523 8843 2089 34059 31970
40 464 6935 6471 713 6101 5388 744 11310 10566 2465 38132 35667
50 556 7464 6908 863 7261 6398 749 12781 12032 2788 41280 38492

in Section 7.1 is denoted as Setting 1 (S1). In Setting 2 (S2),
65% users are assigned with pu(cu) = 2cu − c2u, and 20%
users with pu(cu) = cu, and 15% users with pu(cu) = c2u.
The algorithms are run again in Setting 2.

Table 3 reports the influence spread of the proposed
algorithms with α = 1.0. As can be seen, the influence
spread of the four algorithms decreases in setting 2. This
phenomenon indicates that users are harder to satisfy under
Setting 2. In terms of the ability to cope with the change
of seed probability functions, 2CD shows even better per-
formance than Ada+CD and comparable performance with
Ada+GS. The possible reason is that 2CD makes refinement
over a large amount of users in N(S), while Ada+CD and
Ada+GS only allocate discounts to neighbors of one agent
each time. Thus, it is easier for 2CD to find an alternative
user to seed when the seed probability function of a user
becomes not favorable. However, Ada+MGS shows the best
performance in coping with the change of settings. The

explanation is that the enumeration process helps find good
action combinations in Setting 2.

7.3.4 Impact of the Friendship Paradox Phenomenon
In this part, we evaluate the impact of the FP phenomenon.
The algorithms are evaluated under two settings, i.e., |X| =
100 and 1000. To show the effect of the FP phenomenon, we
compare the influence spread between one-stage algorithms
and two-stage algorithms. In the non-adaptive case, CD and
2CD are selected for experiment. In the adaptive case, the
only one-stage algorithm Ada is tested and Ada+MGS is
selected due to its impressive performance.

The influence spread is shown in Table 4. Regardless
of the size of X , two-stage algorithms show larger influ-
ence spread than one-stage algorithms by exploiting the
influential neighborhood. We next focus on the influence
spread of algorithms in the larger |X|. For the two one-
stage algorithms, when |X| = 1000, the influence spreads
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both become larger, since the number of influential users is
likely to be larger in a larger X . However, the performance
of two-stage algorithms is different. When |X| = 1000, the
influence spread of 2CD becomes smaller, while Ada+MGS
shows even better performance. We further compare the
increase of influence spread brought by two-stage algo-
rithms. In the two relatively smaller datasets, i.e., Wiki-
Vote and Ca-Condmat, the increases of 2CD and Ada+MGS
both become smaller when |X| = 1000. However, in Dblp
and LiveJournal, the increase of Ada+MGS is larger when
|X| = 1000, while the increase of 2CD is still smaller. This
observation indicates that Ada+MGS has a better ability to
utilize the friendship paradox phenomenon.

8 CONCLUSION AND FUTURE WORK

This paper studies the influence maximization problem with
limited initially accessible users. To overcome the access
limitation, we propose a new two-stage seeding model with
the FP phenomenon embedded, where neighbors are further
seeded. Based on this model, we solve the limited influence
maximization problem under both non-adaptive and adap-
tive cases. In the non-adaptive case, we examine the proper-
ties of this problem and establish a two-stage coordinate
descent framework to determine the discount allocation
in two stages. In the adaptive case, we first consider the
discrete-continuous setting and design the adaptive greedy
algorithm with theoretical guarantee. Then, in the discrete-
discrete setting, the allocation in stage 2 is considered to be
discrete. Accordingly, two algorithms are proposed based on
greedy selection. Finally, extensive experiments are carried
out on real-world datasets to evaluate the performance of
the proposed algorithms. Moreover, our work is only a
primary study into the two-stage IM, since the derivation of
diffusion probabilities is not considered. While by serving as
a subroutine, our study would continue to benefit the design
of effective online algorithms which consider the learning of
diffusion parameters.

In the future, we would like to devote to finding better
allocations than the convergent one to improve the coordi-
nate descent algorithm. In the adaptive case, it is implicitly
assumed that we have enough time to observe the whole
diffusion process, which may take lots of time and thus
impractical. It is worthwhile to study the problem when
only part of the diffusion is observed in each round. In
footnote 3, although we proposed solutions to the case of
unified budget, it is still necessary to treat it as an individual
problem and more effective algorithms could be designed.
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