
APPENDIX A
THE DERIVATION OF PROBABILITY EXPRESSIONS

Derivation of q: Recall the definition of q that the av-
erage probability of finding at least one source destina-
tion pair in the same cell. Without loss of generality, we
make a reasonable assumption which will not deteriorate
the performance. We assume that N is divisible by k + 1
with every k + 1 nodes randomly forming an independent
group. Each node i in a specific group acts as a source
and the other k nodes are its destinations. Hence, any
two nodes within the same group form an S-D pair, and
nodes not belonging to this group can only act as relays.
This assumption holds in the rest of the proof. Due to
the independent location distribution of each node, the
probability that no source-destination pair is found in cell
c is (1 − πc)

k+1 +
(k+1

1

)
πc(1 − πc)

k. Since there are N
k+1

groups, the probability of finding at least one S-D pair in
the same cell c is (1− [(1− πc)k+1 +

(k+1
1

)
πc(1− πc)k]

N
k+1 ).

With this, we obtain the expression of q.
Derivation of p: Recall the definition of p that the average

probability of finding at least two nodes in the same cell. Its
opposite event is that no node or only one node is found
in the cell. Consider a cell c, the probability that no node in
it is (1 − πc)N , and the probability that only one node in it
is
(N

1

)
πc(1− πc)N−1. Thus, the probability that at least two

nodes in cell c is 1 − (1 − πc)N −
(N

1

)
πc(1 − πc)N−1. With

this, we obtain the expression of p.
Derivation of q′: The probability of finding only one user

in cell c is given by
(N

1

)
πc(1 − πc)N−1. The probability of

finding its destination in an adjacent cell of cell c is k times
of Πadj(c). Using this, we obtain the expression of q′.

Derivation of p′: Given that there is exactly 1 user in cell
c, the probability that at least one of the other N − 1 users is
in an adjacent cell is given by 1− (1−Πadj(c))

ki. Thus, we
obtain the expression of p′.

Derivation of q′′: We first compute the probability that
there are i users in cell c such that there are no S-D pairs.
Clearly, 1 ≤ i ≤ N

i+1 , otherwise there must be at least one
source destination pair. Note that

(N
i

)
πic(1 − πc)N−i is the

probability of finding i users in cell c. Given that there are i
users in a cell, the probability that no S-D pair in the same

cell is
(k+1)i(

N
k+1
i

)
(N

i )
. Furthermore, the probability that there

is at least 1 node in an adjacent cell that will make an S-D
pair with one of these i nodes given that it is not in cell c is
1− (1−Πadj(c))

ki. Combining all the arguments, we obtain
the expression of q′′.

Derivation of p′′: The derivation of p′′ is similar to that
of p′′. The probability of finding i users in cell c such that
no S-D pair is found in cell c as well as any adjacent cells is
(k+1)i(

N
k+1
i

)
(N

i )
. To ensure at least 2 users in cell c, we sum over

i from 2 to N
2 . Combining all these, we obtain the expression

of p′′.

APPENDIX B
PROOF OF THEOREM 1

Let Ψ denote all the scheduling schemes that can make
the network stable. Consider a policy ψ ∈ Ψ. Let Xψ

ab(T )

be the number of packets successfully transmitted from
sources to all the k destinations by exactly “a” same cell
transmissions and “b” adjacent cell transmissions during
the time interval (0, T ). To make the network stable, there
should be an arbitrarily large value T which make the total
output rate within ε ( ε > 0 is a constant) of the total input
rate:

∞∑
a=0

∞∑
b=0

Xψ
ab(T )

T
≥ Nλ− ε. (1)

Let Y ψ(T ) be the total number of packet transmissions in
interval (0, T ) under policy ψ. Since during (0, T ), the num-
ber of packet transmission is at least

∑ ∑
a+b≥k

(a+ b)Xψ
ab(T ),

we have

1

T
Y ψ(T ) ≥ 1

T

∞∑
a=0

∞∑
b=0

(a+ b)Xψ
ab(T )

≥ k
T

∑
a+b=k

Xψ
ab(T ) +

k + 1

T

∑
a+b≥k

Xψ
ab(T )

− k + 1

T

∑
a+b=k

Xψ
ab(T )

=(k + 1)(Nλ− ε)− 1

T

∑
a+b=k

Xψ
ab(T ),

where the last inequality follows from inequality (1). Since ε
is an arbitrary positive constant, we have,

λ ≤ lim
T→∞

Y ψ(T ) +
∑

a+b=k
Xψ
ab(T )

(k + 1)TN
. (2)

Assume that same cell direct S-D transmission happens with
probability p1 and the adjacent cell direct S-D transmission
happens with probability p2. Thus we have,∑
a+b=k

Xψ
ab(T ) = kpk1X

ψ
10(T ) + [(k − 1)pk−1

1 Xψ
10(T )

+p2X
ψ
01(T )] + ...+ kpk2X

ψ
01(T )

=
k∑
a=0

apa1X
ψ
10(T ) +

k∑
b=0

bpb2X
ψ
01(T )

≤ Xψ
10(T ) +Xψ

01(T ). (3)

Recall the definition of Xψ
ab(T ) at the beginning of the proof.

We see that Xψ
01(T ) is the number of packets transmitted

from sources to all the k destinations by no same cell
transmission and one adjacent cell transmission. Similarly,
Xψ

10(T ) is the number of packets transmitted from sources to
all the k destinations by one same cell transmission and no
adjacent cell transmission. Thus using inequalities (2) and
(3), we have

λ ≤ lim
T→∞

Y ψ(T ) +Xψ
10(T ) +Xψ

01(T )

(k + 1)TN
. (4)

Let Y ψc (τ) be the total number of packet transmissions in
cell c under policy ψ at time slot τ . Similarly, Xψ

10,c(τ) and
Xψ

01,c(τ) denote the number of direct S-D packets delivered
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within cell c and from adjacent cell to cell c respectively at
slot τ . Hence,

Y ψ(T ) +Xψ
10(T ) +Xψ

01(T )

=
T−1∑
τ=0

C∑
c=1

(
Y ψc (τ) +Xψ

10,c(τ) +Xψ
01,c(τ)

)
.

(5)

Let the following four indicator functions denote the packet
transmission events under any specific scheduling scheme
ψ at slot τ :

I1
c (τ)=


1, if a direct S-D transmission happens

within the same cell c at slot t,
0, else.

(6)

I2
c (τ)=


1, if a relay transmission happens

within the same cell c at slot τ ,
0, else.

(7)

I3
c (τ)=


1, if a direct S-D transmission happens

between cell c and its adjacent cell at slot τ ,
0, else.

(8)

I4
c (τ)=


1, if a relay transmission happens between

cell c and its adjacent cell at slot τ ,
0, else.

(9)
Let Zψc (τ) = Y ψc (τ) +Xψ

10,c(τ) +Xψ
01,c(τ), and note that

the transmission rates within the same cell and between
adjacent cells are R1 and R2 respectively. Hence, we have

Zψc (τ)=Y ψc (τ) +Xψ
10,c(τ) +Xψ

01,c(τ)

=R1(I1
c (τ) + I2

c (τ)) +R2(I3
c (τ) + I4

c (τ))

+R1I
1
c (τ) +R2I

3
c (τ)

=2R1I
1
c (τ)+R1I

2
c (τ)+2R2I

3
c (τ)+R2I

4
c (τ).

(10)

Note that only one of these four indicator functions is
1 at slot τ . According to the priority order, we schedule
the packet transmission events as follows: if R1 ≥ 2R2, the
optimal order is I1

c (τ) � I2
c (τ) � I3

c (τ) � I4
c (τ); if 2R2 >

R1 ≥ R2, the optimal order is I1
c (τ) � I3

c (τ) � I2
c (τ) �

I4
c (τ). Let Zc(τ) = maxψ∈ΨZ

ψ
c (τ). Following the optimal

order and combining Eq. (4), (5) and (10), we have

λ≤ lim
T←∞

T−1∑
τ=0

C∑
c=1

Zc(τ)

(k + 1)TN
=

1

(k + 1)N

C∑
c=1

E{Zc(τ)}

≤
{

2R1q+R1(p−q)+2R2q
′+R2(p′−q′)

(k+1)θ , if R1 ≥ 2R2,
2R1q+2R2q

′′+R1p
′′+R2(p′−q′)

(k+1)θ , if 2R2 ≥ R1 ≥ R2.

APPENDIX C
PROOF OF THEOREM 2

A packet is called type c if its destination is node c. Let
U

(c)
i (t) be the number of type c packets queued in the buffer

of node i at time t. For all node i 6= c, the d-step dynamics
of unserved packets satisfy:

U
(c)
i (t+ d) ≤max

[
U

(c)
i (t)−

t+d−1∑
τ=t

∑
b

µ
(c)
ib (τ), 0

]
+
t+d−1∑
τ=t

∑
a

µ
(c)
ai (τ) +

t+d−1∑
τ=t

A
(c)
i (τ),

(11)

where A(c)
i (τ) is the number of type c packets arriving at

source node i at the beginning of slot τ and µ
(c)
ab (τ) is the

serving rate for type c packets from transmitter a to receiver
b in slot τ . Note that the above formula is not an equality
but an inequality. Because the actual rate of type c packets

from other nodes may be smaller than
t+d−1∑
τ=t

∑
a
µ

(c)
ai (τ) if they

do not have enough packets at this moment.
Now we define the Lyapunov function as L(

−→
U (t)) =

N∑
i=1

∑
c 6=i

(U
(c)
i (t))2. By Eq. (11), we can obtain the following

inequality for the d-step Lyapunov drift:

E{L(
−→
U (t+ d))− L(

−→
U (t))|

−→
U (t)}

≤d2BN − 2d
∑
i 6=c

U
(c)
i (t)

1

d

t+d−1∑
τ=t

E{
∑
b

µ
(c)
ib (τ)

∑
a

µ
(c)
ai (τ)

−A(c)
i (τ)|

−→
U (t)},

(12)

where B = (Amax + µinmax)2 + (µoutmax)2. And Amax is the
maximum extraneous arrival rate of any node. µinmax is the
maximum transmission rate into any node, which equals
R1 + JR2. µoutmax is the maximum transmission rate out of
any node, which equals R1.

Note that the Two hop relay algorithm makes decisions
only relying on the current distribution of nodes. Besides,
the Markovian mobility model has the property of ergodic-
ity and stability. Thus applying Lemma 1 in [4], we obtain

E
{∑

b

µ
(c)
ib (t+ d)|

−→
U (t)

}
≥
(∑

b

µ
(c)
ib

)
(1− 2Nαγd). (13)

Taking the average of an interval of length d, we have

1

d

t+d−1∑
τ=t

E
{∑

b

µ
(c)
ib (τ)|

−−→
U(t)

}
≥1

d

t+d−1∑
τ=t

(∑
b

µ
(c)
ib

)
(1− 2Nαγτ−t)

=
(∑

b

µ
(c)
ib

)(
1−2Nα(1− γd)

d(1− γ)

)
,

(14)

1

d

t+d−1∑
τ=t

E
{∑

a

µ
(c)
ai (τ)|

−−→
U(t)

}
≤
(∑

a

µ
(c)
ai

)(
1+

2Nα(1− γd)
d(1− γ)

)
,

(15)
where α(1−γd)

d(1−γ) = δ
2N2 .

By applying inequalities (14) and (15), we can derive a
lower bound on the last term of (12) and further bound the
d-step Lyapunov drift. The derivation is divided into two
cases.

1) In an odd subslot, node i operates in the source-to-
relay mode and is the source of packet c: A(c)

i (τ) = λ and∑
a
µ

(c)
ai (τ) = 0. So we just need to calculate

∑
b
µ

(c)
ib . Let

r1 denote the transmission rate in this mode. According
to our algorithm, we have Nr1 = C(R1p + R2p

′), i.e.,
r1 = R1p+R2p

′

θ . Let ϕ , R1p+R2p
′

R1p+R2p′+R1q+R2q′
(0 < ϕ < 1),

then r1 = (k + 1)µϕ. Let δ = 1−ρ
2 and α(1−γd)

d(1−γ) = δ
2N2 , then
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the time average summation of the last term of (12) can be
expressed as follows:

1

d

t+d−1∑
τ=t

E{
∑
b

µ
(c)
ib (τ)−

∑
a

µ
(c)
ai (τ)−A(c)

i (τ)|
−→
U (t)}

≥
(∑

b

µ
(c)
ib

)(
1− 2Nα(1− γd)

d(1− γ)

)
− λ (16)

= (k + 1)µϕ(1− δ

N
)− ρµ

≥ (k + 1)µ
[
(1− δ

N
)− ρ

k + 1

]
≥ (k + 1)µ(1− ρ)

2
.

2) In an even subslot, node i operates in the relay-to-
destination mode and is the relay of packet c: A(c)

i (τ) = 0,
µ

(c)
ai (τ) > 0 only when node a is the source node of packet
c; µ(c)

ib (τ) > 0 only when node b is node c. According
to our algorithm, with probability 1−δ

2 the source-to-relay
transmission happens and with probability 1+δ

2 the relay-
to-destination transmission happens. Thus the total relay-
to-destination transmission rate r2 = 1+δ

1−δ r1. Moreover, in
our algorithm, a relay can receive packets from N−1 source
nodes with equal probability (except for itself). Likewise, it
can relay packets to N − 2 nodes with equal probability
(except for the source and itself). Thus,∑

a

µ
(c)
ai =

r1

N − 1
,
∑
b

µ
(c)
ib =

r2

N − 2
.

Let δ = 1−ρ
2 and α(1−γd)

d(1−γ) = δ
2N2 , we derive the time

average summation in (12) as follows:

1

d

t+d−1∑
τ=t

E{
∑
b

µ
(c)
ib (τ)−

∑
a

µ
(c)
ai (τ)−A(c)

i (τ)|
−→
U (t)}

≥
(∑

b

µ
(c)
ib

)(
1− 2Nα(1− γd)

d(1− γ)

)
−
(∑

a

µ
(c)
ai

)(
1 +

2Nα(1− γd)
d(1− γ)

)
=

(∑
b

µ
(c)
ib −

∑
a

µ
(c)
ai

)
−
(∑

b

µ
(c)
ib +

∑
a

µ
(c)
ai

) δ
N

≥
(r2 − r1)− (r2+r1)δ

N

N − 2
≥ (k + 1)µϕ(1− ρ)

N(1− δ)
. (17)

Applying (16) and (17) into (12), we have

E{L(
−→
U (t+ d))− L(

−→
U (t))|

−→
U (t)}

≤ d2BN − d
(1 + δ

2

(k + 1)µ(1− ρ)

2

+
1− δ

2

(k + 1)µϕ(1− ρ)

N(1− δ)
)∑
i6=c

U
(c)
i (t)

≤ d2BN − d (k + 1)µϕ(1− ρ)

2N

)∑
i 6=c

U
(c)
i (t). (18)

Note that the inequality (18) satisfies the condition in
Lemma 1, then by Lemma 1, we have

lim sup
t→∞

1

t

t−1∑
τ=0

∑
i 6=c

E{U (c)
i (τ)} ≤ 2dBN2

(k + 1)µϕ(1− ρ)
. (19)

Since the total input rate is Nλ, by Little’s Law, the
average delay for a source destination pair is 2dBN

(k+1)λµϕ(1−ρ) .
Recall the definition of network delay that the time needed
for a packet to be transmitted from the source to its k
destinations. To analyze the network delay, we apply the
cover time of the Markov chain.

We formulate the multicast transmission session as an
ergodic Markov chain S = {s0, s1, s2, ..., sk} with k + 1
states. The state Si = 1 denotes that the ith destination
has obtained the packet. At the very beginning of the
transmission, no destination holds the packet, thus all of
the states in the Markov chain is 0. The first hitting time Ti
of the state i (1 ≤ i ≤ k) is defined as the time needed for
the ith destination to obtain the packet. Thus the expected
time for a source sending the packet to all its k destinations
equals to the time needed to cover all the k + 1 states of the
Markov chain.

We next introduce a following lemma to compute the
cover time in such case.

Lemma 1. For the Markov chain with k + 1 states defined as
before with initial state 0, the cover time D = max1≤i≤kTi for
all the states {1, 2, ...,K} satisfies

E[D] =
( k∑
m=1

1

m

)
E[T1].

Proof. Let T0,m(m ≤ k) denote the time when all the states
{0, 1, 2, ...,m} have been hit in some sequence and thusD =
T0,k. Due to the i.i.d. property, we have:

E[T0,m − T0,m−1|Xt, t ≤ T0,m−1] = E[Tm]Pr(XT0,m
= m).

Due to the finite static ergodic Markov chain mobility
model, we have

E[T1] = E[T2] = ...E[Tk].

Since each of the k states is hit with equal probability, we
can obtain that

Pr(XT0,m = m) =
1

m
.

Thus, the mean cover time E[D] is as follows:

E[D] =
k∑

m=1
E[T0,m − T0,m−1|Xt, t ≤ T0,m−1]

=
k∑

m=1
E[Tm]Pr(XT1,m = m)

=
( k∑
m=1

1
m

)
E[T1].

(20)

In the network, with the Two hop relay algorithm, E[Ti]
is 2dBN

(k+1)λµϕ(1−ρ) for all 1 ≤ i ≤ k. Also notice the sum-

mation of the harmonic series
k∑

m=1

1
m ∼ log k, by Lemma

2, we have that if the input rate λ < R1q+R1P+R2q
′+R2p

′

(k+1)θ
in the case R1 ≥ 2R2, then the delay of the network is
D ≤ 2dBN log k

(k+1)λµϕ(1−ρ) . In order sense, when R1 ≥ 2R2, the
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network capacity is Θ( 1
k ) 1 and accordingly the delay is

Θ(N log k
k ). Therefore the tradeoff between delay and capac-

ity in the network is Θ(N log k), which is a better result than
[6].

APPENDIX D
DERIVATION OF THE MINIMUM ENERGY FUNCTION

Here, we present the derivation of the minimum en-
ergy function under four different functions. Recall that
the minimum energy function Φ(λ) is derived by solving
an optimization function: e ≥ inf

x∈Ω̃
g(x), where Ω ⊂ Ω̃ =

Ω̃0 ∩ Ω̃1 ∩ Ω̃2 ∩ Ω̃3 and g(x) ≤ f(x). The definitions of new
constraint sets Ω̃0, Ω̃1, Ω̃2, Ω̃3 are as follows:

Ω̃0 , Ω0, Ω̃1 , Ω1,

Ω̃2 ,
{
x
∣∣kxk0

R1
+

(k + 1)

R1

∑
a≥k+1

xa0 ≤ c1 + c2
}
,

Ω̃3 ,
{
x
∣∣kxk0

R1
+

(k + 1)

R1

∑
a≥k+1

xa0 +
kx0k

R2
≤ c1 + c2 + c3

}
.

Now we analyze the four different bounds for e, with
each in the linear form of e ≥ αλ+ β. These bounds define
the four piecewise linear regions of Φ(λ).

(1) First note that f(x) ≥ k
R1

∑
a,b|a+b≥k

xab

N . Therefore

taking g(x) = k
R1

∑
a,b|a+b≥k

xab

N , we have:

e ≥ inf
x∈Ω̃0

k

R1

∑
a,b|a+b≥k

xab
N
,

where Ω̃0 ,
{
x
∣∣ ∑
a,b|a+b≥k

xab = Nλ
}

. Hence, we have the

first linear function: e ≥ kλ
R1

.
(2) For the second case, we note that f(x) ≥ kxk0

R1N
+∑

(a,b) 6=(k,0)

axab

R1N
≥ (k+1)xk0

R1N
+

k
∑

(a,b)6=(k,0)

xab

R1N
. Thus taking this

lower bound of f(x) as g(x), we have:

e ≥ inf
x∈Ω̃0

⋂
Ω̃1

kxk0

R1N
+

(k + 1)
∑

(a,b)6=(k,0)

xab

R1N
,

where Ω̃1,
{
x
∣∣kXk0

R1
≤ c1

}
. Thus solving this optimization

problem we have:

e ≥ kxk0

R1N
+

(k + 1)
∑

(a,b) 6=(k,0)

xab

R1N

≥ kxk0

R1N
+

(k + 1)(
∑

a+b≥k
xab − xk0)

R1N

≥ kxk0

R1N
+

(k + 1)(Nλ− xk0)

R1N

≥ (k + 1)λ

R1
− c1
Nk

(Ω̃1)

=
q

θ
+
k + 1

R1

[
λ− R1q

kθ

]
(c1 = Cq).

1. We use the standard asymptotic notations throughput this paper.
For two functions f(n) and g(n), the notations are as follows: f(n) =

o(g(n)) ⇔ limn→∞
f(n)
g(n)

= 0; f(n) = ω(g(n)) ⇔ limn→∞
g(n)
f(n)

= 0;

f(n) = O(g(n)) ⇔ limn→∞
f(n)
g(n)

< ∞; f(n) = Ω(g(n)) ⇔
limn→∞

g(n)
f(n)

< ∞; f(n) = Θ(g(n)) ⇔ f(n) = Ω(g(n)) and
g(n) = O(f(n)).

(3) For the third case, we have:

f(x) ≥ kxk0

R1N
+

(k + 1)
∑

a≥k+1
xa0

R1N
+

k
∑

a+b≥k+1&b 6=0
xab

R2N
.

Taking the lower bound of f(x) as g(x), we have:

e ≥ inf
x∈Ω̃0

⋂
Ω̃1

⋂
Ω̃2

kxk0

R1N
+

(k + 1)
∑

a≥k+1
xa0

R1N

+

k
∑

a+b≥k+1&b6=0
xab

R2N
,

where Ω̃2,
{
x
∣∣kxk0

R1
+ (k+1)

R1

∑
a≥k+1

xa0 ≤ c1+c2
}

. Thus solving

this optimization problem we have:

e+
k

R2N

[
Nλ−xk0−

∑
a≥k+1

xa0

]
≥c1 + c2

N
+
kλ

R2
− k

R2N

[
xk0 +

∑
a≥k+1

xa0

]
(Ω̃2)

≥c1 + c2
N

+
kλ

R2
− kR1

R2N

[c1 + c2
k + 1

+
c1

k(k + 1)

]
(Ω̃2)

=
p

θ
+
k

R2

[
λ− R1p

(k + 1)θ
− R1q

(k + 1)kθ

]
(c1 = Cq, c2 = C(p− q)).

(4) For the forth case, we have:

f(x) ≥ kxk0

R1N
+

(k + 1)
∑

a≥k+1
xa0

R1N
+
kx0k

R2N

+

(k + 1)
∑

b≥k+1
xab

R2N
.

Taking the lower bound of f(x) as g(x), we have:

e ≥ inf
x∈Ω̃0

⋂
Ω̃1

⋂
Ω̃2

⋂
Ω̃3

kxk0

R1N
+

(k + 1)
∑

a≥k+1
xa0

R1N

+
kx0k

R2N
+

(k + 1)
∑

b≥k+1
xab

R2N
,

where Ω̃3,
{
x
∣∣kxk0

R1
+ (k+1)

R1

∑
a≥k+1

xa0 + kx0k

R2
≤ c1 + c2 + c3

}
.
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Thus solving this optimization problem we have:

e ≥ kxk0

R1N
+

(k + 1)
∑

a≥k+1
xa0

R1N
+
kx0k

R2N

+
k + 1

R2N

[
Nλ− xk0 −

∑
a≥k+1

xa0 − x0k

]
=
xk0

N

[ k
R1
− k + 1

R2

]
+
xa0

N

[k + 1

R1
− k + 1

R2

]
+

(k + 1)Nλ

R2N
− x0k

R2N

≥ 1

N

[ 1

R1
− 1

R2

][
kxk0 − (k + 1)xa0

]
+

(k + 1)λ

R2

− c3
kN
− xk0

R2N
(Ω̃3)

≥
[ 1

R1
− 1

R2

]R1(c1 + c2)

N
+

(k + 1)λ

R2
− c3
kN

− c1R1

kR2N
(Ω̃1, Ω̃2)

=
p+ q′

θ
+
k + 1

R2

[
λ− R2q

′ +R1(kp+ q)

(k + 1)kθ

]
(c1 = Cq, c2 = C(p− q), c3 = Cq′).


